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Abstract: Establishing long-view situation awareness of threat agents requires an 
operational capability that scales to large volumes of network data, leveraging the 
past to make-sense of the present and to anticipate the future. Yet, today we are 
dominated by short-view capabilities driven by misuse based strategies; triggered 
by the structural qualities of attack vectors. The structural aspects of cyber threats 
are in a constant flux, rendering most defensive technologies reactive to previously 
unknown attack vectors. Unlike structural signature based approaches, both 
the real-time and aggregate behaviors exhibited by cyber threats over a network 
provide insight into making-sense of anomalies found on our networks. In this work, 
we explore the challenges posed in identifying and developing a set of behavior 
primitives that facilitate the creation of threat narratives use to describe cyber 
threats anomalies. Thus, we investigate the use aggregate behaviors derived from 
network flow data establishing initial behavior models used to detect complex 
cyber threats such as Advanced Persistent Threats (APTs). Our cyber data fusion 
prototype employs a unique layered methodology that extracts features from 
network flow data aggregating it by time. This approach is more scalable and flexible 
in its application in large network data volumes. The preliminary evaluation of the 
proposed methodology and supporting models shows some promising results.

Keywords: Behavior analysis, aggregate behaviors, network flow analysis, 
anomaly detection, machine learning



1. INTRODUCTION
The North Atlantic Treaty Organization (NATO) is faced with the increasing need 
to support international operations that leverage the use of complex end-to-end 
architectures. NATO Network Enabled Capability (NNEC) is an integral program 
focused on meeting these needs [1]. The ubiquity of these net-centric information 
systems is realized by the connectivity of hand-held technologies, operated and 
managed by users in the field, to backend mission support systems managed by 
tens of thousands of administrators. The attack surfaces associated with such 
systems allows cyber threat agents (e.g. nation states, hackivists) to employ the use 
many types of coupled attack vectors, such as phishing and key-logging; gaining 
access and persisting in these environments for years unnoticed. The complexity 
of these cyber threat agents has grown steadily in recent years, and is exhibited in 
the employment of distributed cyber missions that operate over various time scales 
within our Information and Communication Technology (ICT). 

In 2013, Kaspersky Lab uncovered the actions of ‘’Red October” which they feel 
has been harvesting intelligence from high profile organizations since 2007 [2]. This 
espionage group incorporated a set of simple attack vectors that allowed them to 
penetrate and persist in both public and private organizations for prolonged period 
of time. According to Verizon in 2012, threat agents incorporate multiple threat 
actions during an attack, and these attacks can go on form months well within 
our supply chains and distributed throughout our networks [3]. Yet our detection 
models and cyber defence capabilities are still tuned for single ingress points, and 
mostly employ rule-based defensive strategies. 

There is an array of defence-in-depth capabilities that can be employed in concert to 
deter the sophisticated attacks from threat agents including: firewalls, Multi-factor 
authentication, role and attribute based access control end-point security, Network 
Intrusion Detection/Prevention Systems (IDS/IPS) training and policy creation and 
enforcement. Each capability provides deterrence to attack vectors in a slightly 
different way. Most monitoring and response capabilities can be categorized into 
misuse detection and anomaly detection. While the misuse detection can only 
detect known attacks, anomaly detection on the other hand can detect unknown 
and zero-day attacks. However, anomaly-based detection methods suffer from false 
positives, as all anomalies may not relate to attacks.  This work is on leveraging 
behaviour-based anomaly detection with focus on hierarchical aggregated features/
attributes of monitored hosts.

One of the reasons why threat agents pose such a significant risk to national 
infrastructure is that cyber defence capabilities are dominated by misuse-based 
capabilities that provide short-view situation awareness. Most of these capabilities 



correlate volumes of real-time events making sense of what is happening at any 
given instant in time but do not scale well over longer time periods. The anomaly 
detection paradigm offers the ability to adapt to emergent threats based on past 
events. 

In of 2009, BBN addressed this issue by proposing a notional architecture that can 
scale at increasing network speeds using event aggregation [4]. Key to the success 
in their approach is the use of Scyllarus, an event correlation system [5]. This 
correlation system clusters events by measuring the similarity of their attributes. 
Our position is to take a host-centric posture, instead of event-centric, focusing on 
the aggregate behaviours of hosts as extracted from using network flow traffic.

Over the past few years behaviour-based models have emerged to bridge the gap 
in capability focused on anomaly defection of emergent threats [6], [7], [8]. These 
systems are mostly event-centric, where behaviours are extracted from event 
features and aggregated over time in terms of a source and a destination. For 
example, in [7], aggregate event graphs are used make sense of behaviours obtained 
from sensors. The event takes into account both the source and destination providing 
a connection, or edge in the graph. In another example, Rehak uses classifiers 
agents to score events as legitimate or malicious [6]. Lastly, LNLL created a system 
SETAC that uses a distributed model to detect both local and global anomalistic 
behaviours within their networks [8]. Unlike the previous systems, we position our 
host-centric work to develop layers of classifiers, with the first intermediate step 
toward establishing a set of primitives used measure overall behaviours of hosts. 

 In our previous work [9], we developed a host-centric cyber data fusion capability 
based on a layered methodology (Figure 1), which transforms network flow data 
into aggregate features of hosts over various time windows. We collected network 
flow data using SiLK over a period of six months to begin our exploration of the 
data [10]. One of our findings suggests that when a group of host is observed over a 
period of time, they behave in very consistent ways. 

In our current work, we are looking to develop an adaptive methodology that 
leverages the past aggregate behaviours of normal operation of systems to build a 
predictive model. We then compare the predicted behaviour of a host or set of hosts 
with the actual behaviours to determine the classification of the abnormality of a 
host. The overall classification is measured in terms of a set of behaviour primitives. 
In order to minimize false positives in attack detection, this approach incorporates 
some signalling mechanism similar to the biological immune system. 



Figure 1. A Layered Methdology. Most CND technology is developed to operate in Layer 1, 
processing volumes of raw data and events from sensor technology. Our unique approach 
transforms the data first, Layer 2, and then applies classification models in Layer 3 and 
above

Figure 1 illustrates a layered detection methodology approach, which allows the 
Team to work independently at different abstraction layers of the overall problem.  
In this approach, we can focus on developing algorithms in Layer 1-3 and in the 
future we can focus on social-based algorithms in Layer 4-5.  We envision multiple 
algorithms to leverage in the layered model. 

The approach we take in this research is to establish a rich set of behaviour 
primitives that facilitates long-view situation awareness. The behaviour primitives 
represent the basis for a behavioural language through which we can someday 
create threat narratives that are shared as actionable intelligence in real-time 
throughout a trusted community of cyber defenders. Narratives are viewed as 
graphs of behaviour primitives that capture aggregate description of threat agents. 
These threat narratives can represent social relationships and/or characteristics that 
are shared between a group of hosts, geographic region, and/or autonomous system. 



This paper is organized as follows. In Section 2 we review work related our proposed 
approach.  Section 3 we discuss our methodology [11], which includes ground 
truth development, feature selection, model development and model evaluation. In 
Section 4 we discuss the conclusions of our results.  

2. RELATED WORK
In this section, we review related intrusion detection research leading to behavior 
analysis. We then present important works on distributed collaboration and 
correlation, intrusion detection leveraging network flow, cyber situation awareness, 
and review pertinent work on knowledge discovery. This section contrasts the 
evolving threat with the models that were used in establishing existing detection 
technologies.

In 1987, an intrusion detection model proposed by Denning focused on the 
identification of network attacks directed toward a single host [12]. The threat, at 
that time, was comprised mostly of attackers attempting to gain remote access to a 
host. Soon after this model was proposed, the introduction of worms was officially 
acknowledged by the release of the Morris Worm in 1988 by Robert T. Morris 
[13]. Since this time, there has been a constant tug-of-war between the introduction 
of new threat types and the development of new techniques to meet the evolving 
detection requirements. Ghosh et al. [11] developed an application level behavior 
model for intrusion detection.

A. MULTI-EVENT CORRELATION AND DISTRIBUTED 
COLLABORATION

In Section 1, as discussed by [4], event correlation can facilitate aggregation 
and scaling to network speed. BotHunter [14] is a system built specifically for 
the correlation of events occurring within specific network locales. This system 
focuses on detecting network dialog communications between various bots within 
a botnet and is driven by alerts from SNORT [15]. These dialogs represent different 
communication behaviors exhibited by a bot during its lifecycle. An event trail is 
created that triggers an alert based on specific bot behaviors that occur.

The Worminator project leverages the distributed collaboration of events generated 
from an IDS in order to establish attack patterns [16]. The system leverages 
alert aggregation and reduction to reduce the cost of the exchanging raw data. A 
correlation scheduler is used to set up peers to exchange alerts. The Worminator 
paper highlights the need to reduce and manage the large volumes of alerts that 
are exchanged between detection peers. Worminator uses Bloom filters to manage 
privacy by setting up private watch lists.



Our proposed host-centric model is driven by network flow captured using SiLK 
instead of an event-centric IDS. We derive profiles consisting of features extracted 
from the network communication between various hosts. These behavior profiles 
are fed into a classification and correlation engine.

B. KNOWLEDGE DISCOVERY AND ADAPTABILITY

In Section 1 we discussed the knowledge discovery needs for a system to adapt by 
leveraging the past to the present in [6].  Knowledge engineering has been applied 
to intrusion detection in MADAM ID [17] where association rules mining was 
used offline to construct new rules to detect threats in a misuse detection system. 
Knowledge discovery has been applied in another way for misuse detection in the 
Intelligent Intrusion Detection System (IIDS) [18]. Misuse signatures are viewed 
as rules through which a genetic algorithm creates a set of rules by combining 
behaviors based on network connection information. In both cases, rules are 
directly related to threat signatures. We propose a more abstract view dealing with 
knowledge discovery, where threats are represented in a set of behavior primitives 
and extracted features.

C. DMNET – A CYBER DATA FUSION PROTOTYPE

The overall system [9] focuses on the notion of tracking various network objects, 

   

O
, e.g. hosts, hostgroups, and networks, and determining if they are threats. Tracking 
these objects involves collecting events and data from a number of different network 
sensors, e.g., network flow, NIDS, honeypots, and creating a sample space. 

In our current data fusion system, network flow data and alerts generated by network 
sensors reflect the totality of information and model’s sample space, 

   

S, available to 
the detection system regarding the objects to be analyzed.

To utilize this data, it is first normalized and transformed into a representation that 
is conducive to algorithmic processing.  The fusion engine operates over a sample 
space denoted as 

   

S representing sensor data.  This fusion operation is represented 
by an object behavioral analysis function,

   

B.  

The aggregated behavioral analysis of the sample for a specific object 

   

O, 

   

B SO( )
, produces a feature characteristic, or behavior, for that object denoted by 

   

F0 
accumulated within a set time window 

   

Ftw,O . The sample space,

   

S, is then 
transformed into an aggregated feature space 

   

FS.  The Time window, 

   

tw , consists 
of periods such as hour, day, month, year.  

   

F0 is represented by a n-tuple, or n-gram, 
of individual time-based features, for example

   

Fmonth,O = f1, f2,... fn , describes 

   

O over a period of a month. These features consist of structural, behavioral, and/or 
application specific properties of 

   

O over a given time period.



Information from the deployed sensors is fed into the fusion engine. Sensors could 
include a variety of network, appliance, or host-based software or hardware. The 
sensor information could be in the form of netflow [10] or pcap records, network 
intrusion detection/prevention system feeds, alerts from honeypots, or anti-virus 
reports. This information is parsed and then normalized by a perception module. 
Normalization refers to the process of converting the parsed information into a 
form that is standard and readily understood and manipulated by modules further 
down in the processing chain. 

The data fusion component maps normalized data to vectors of high dimensionality. 
This is achieved by a profiling function that parses the raw normalized events 
produced by the vectors and aggregates them to form a basic network object 
and embeds them in a vector space. After the profiling is completed, each fusion 
element is associated with a feature characteristic that describes it according to 
the profiling function that was applied. Note that the features that can be extracted 
depend upon the type of sensor provided to the system as a source of network data.  
They range from summary data such as netflow, to fine-grained information such 
as pcap header dumps produced by tcpdump.

Figure 2.  Dmnet Cyber Data Fusion Prototype. This architecture represents a combined fusion and 
data mining methdology.



D. AGGREGATE BEHAVIOR ANALYSIS

Most current technology operates at Layer 1 (Figure 1) in our methodology applying 
classification models to raw data and sensor events. We need technologies that 
scales to the volumes of data and events being created by our cyber sensors. 

Figure 3. Behavioral Visualization Created From Data Generated by Fusion Prototype. There 
are three different visualizations depicted showing UDP behaviors (top right), TCP 
Behaviors (top left) and All protocols bottom. Each dot represents a host in a behavioral 
feature space. These diagrams show the behaviors of hosts going from “source to sink 
behaviors,” where hosts receiving data from our system are to the left, and hosts sending 
data to our system are to the right.

In previous years, Sonalysts started the development of a disruptive cyber fusion 
approach based on aggregate behavioral analysis. Our approach transforms this data, 
Layer 2, first into a rich multivariate features space before we apply classification 
models (Layer 3). 

Layer 1 CND technologies cannot scale well when faced with the increasing amount 
of network traffic. By transforming this raw data into behaviors we can aggregate it 
into multiple time periods and provide a data reduction technique that can begin to 
scale to the increase in traffic volumes. 



3. CHARACTERIZING BEHAVIOR PRIMITIVES
This section highlights the overall methodology for model development that is being 
employed to detect behavioral primitives enumerated in the ground truth data set. 
We evaluate the feasibility of our methodology by applying to three different types 
of classification models focused on the identification of pinging, or beacon-like 
behaviors. This is one of many types of behavioral primitives that we are working 
on quantifying as part of the ongoing research. 

Figure 4.  Behavior Primitive Taxonomy

The behavioral primitives are captured in a behavioral taxonomy (as shown in 
Figure 4). Each node represents a primitive that can be measured in terms of a set of 
features created by our fusion engine and by a classification model. For example, in 
this paper beaconing behavior is modelled using a Support Vector Machine (SVM) 
in terms of three aggregate features: outgoing work, outgoing byte variance, and 
source sink. Outgoing work is defined as the average bytes per packet that leaving a 
network device e.g. host. Outgoing byte variance is measures the changes in bytes 
per packet in outgoing flow traffic from hosts. Source sink is a measure of the 
directionality of traffic from network device and has a value of 0 to 1. Where purely 
beaconing devices have a value of 1. 



A. GROUND TRUTH

The research is leveraging ground truth behavioral data gathered between the 
months of December 2010 and to February 2011. This data is derived from live 
network flow traffic that we continually capture on our networks and transform into 
a behavioral features space. The goal in leveraging this ground truth is produce a 
set of behavioral primitives that can be used to perform predictive analytics using 
a number of learned models. 

The behavioral data for the work is gathered from a number of discrete vantage 
points: External to the firewall focused on non-assets hosts (not managed by the 
client), internal focused on non-assets hosts, and internal vantage point focused 
on assets. We have been gathering behavior data actively since 2009 and to date 
we have shared ground truth data with institutions to promote aggregate behavior 
analysis (2010, Oakridge National Laboratory1.) 

1) Meaningful Indicators

We have identified a number of meaningful indicators during the analysis of the 
three ground truth data sets. Some of these indicators are highlighted in this action 
of the document. 

a) External Vantage Point Non-Assets

There are over 1.7 million hosts being followed in the external vantage ground truth 
data set. The data set is rich with host behaviors found in both monthly and daily 
time aggregates. The following picture highlights abnormal activity, against policy 
of a host running a Unreal Tournament client and having it beacon out to a number 
of external server hosts. This asset is compromised a few weeks later. 

b) Internal Vantage Point Non-Assets

The internal vantage point provides insight to actual communications between 
assets and non-assets, without the noise inherent from outside the firewall. In 
(Figure 5) there is a cluster of behaviors associated with internal hosts performing 
a heartbeat out to Japan. There are multiple machines that are sending a consistent 
amount of bytes and packets to this server. These machines are on a internal subnet 
through which there where known compromised machines.

1  Oakridge National Laboratory, Computational Intelligence Behavior Modeling Laboratory, promoting 
the use of scalable algorithm development using High Performance Computing technologies, http://csiir.
ornl.gov/



Figure 5. Visualization of Monthly External (non-assets) Host behaviors from the External Vantage 
Point.  All traffic in this view is filtered out except for UDP, ICMP, and Other.  See Figure 
3 for a comparison between the protocol specific behaviors. The highlighted points are 
that of a single host in mid December launching Unreal Tournament and beaconing to 
sites around the globe

c) Internal Vantage Point Assets

The Internal vantage point ground truth data set offers the highest fidelity of 
behavioral features. We are only tracking 1400 hosts from this vantage point 
compared to 1.7M hosts on the external one. Having a smaller amount of contacts 
can allow us to focus on finer grained temporal features looking into both the 
quantification of normal and abnormal behaviors that provide a side-by-side 
comparison of host behaviors looking at byte and packet usage. 

B. BEHAVIOR TAXONOMY

In a paper delivered to NATO in 2010 (and based on our work for DHS S&T from 
2006), we established two taxonomies facilitating the understanding of trust in 
end-to-end systems [19]: sensor taxonomy, and a behavioral taxonomy. The sensor 
taxonomy provides a basis for which we associate what behavioral features are 
derived from the various sensors employed by the system. We are further refining 
the two sets of taxonomies to support our work.  In the future, these taxonomies will 
be developed into feature Ontologies with the addition of meaningful attributes to 
each node.  The goal of this work is to identify behavioral primitives derived from 
the analysis of sensor data. 



Figure 6. Comparative Behaviors of Internal Hosts (Assets). In this graph we are looking at byte 
versus packet behaviors. This side-by-side visualization of internal asset behaviors 
presents the degree of behavioral differences between hosts. The host in row 3, from the 
top, and column 2 from the left is the email server. The host in row 4 and column 4 is a 
DNS

 To date, we are only focused on network flow.  In the future, we plan on integrating 
other types of sensor technology into the prototype.  The prototype already has an 
extensible sensor management framework.  

We expect this development to be iterative in nature and mature as we begin to 
apply multiple classification models to derive meaningful behavioral primitives.  

The behavior taxonomy (Figure 4) serves as a way to organize the various behavioral 
primitives that are being researched within the ground truth data set.  Our goal is 
to have a way to score each of the behavioral primitives found within the taxonomy 
based on a specific classification model.  A first attempt in modeling behavioral 
primitives is focused on beaconing behaviors as addressed in the previous section.  
We will plan on choosing multiple features for each model.  Our goal is to be able 
to correlate multiple behavioral features to create graphical narrative describing 
threat agent behaviors.  

C. BEHAVIOR MODEL DEVELOPMENT

Our techniques differ for a number of approaches that focus on the detection of 
specific classes of applications and attacks using models such as SVMs.   Instead 
of classifying each individual flow of communication from a host we focus on 
the aggregation of transformed features to one specific host.  By taking a host-



centric approach in our methodology we are able to collect meaningful behavioral 
aggregations of hosts, subnets, and geographic regions.

Li et al. [20] have applied the use of SVMs to detect seven classes of applications 
with optimized yields of 96.4% accuracy with un-biased training data.  Their work 
has classified the following types of applications: Bulk (ftp), interactive (ssh, telnet, 
rlogin), mail (pop, smtp, imap), service (x11, dns), www (http, https), p2p (kazaa, 
bittorrent, gnutella), multimedia (voice, video streaming), game (half-life), attack 
(worms, virus), and other.  The approach, although accurate, is high grained.  

Instead of using a SVM to classify an application, our approach is finer grained in 
that by decomposing an application, or a threat agent, into a set of behaviors we 
will create behavioral language, or narrative, used to describe the threat actions 
over time.  Lastly, instead of focusing on one specific model we are researching 
a number of models that operate over various time-based behavioral apertures or 
granularities.

1) Model Development using Support Vector Machine

Our initial goal is to focus on the predictive performance associated with ability 
to score behavioral primitives.  There are a number of existing criteria that exists 
for evaluating models: predictive performance, interoperability, and computational 
efficiency. One reason for this choice is that our methodology allows for the 
concurrent processing of multiple models, which can be an area we focus on in 
future spirals. Our ultimate goals is to develop a set of primitives using supervised 
learning methods and then to augment this approach with unsupervised learning 
methods with the larger data sets.  Essentially deriving new models, or variations of 
models, adding to our behavioral Ontology.  For example, there can exist different 
variations of beaconing used by threat agents as they penetrate our systems.  We 
will evaluate our models using receiver operator characteristic (ROC) curves.

2) Support Vector Machine Model Evaluation

A Support Vector Machines (SVM) represent a supervised pattern recognition 
algorithm used for binary classification problems. Being a supervised method, 
we are using our ground truth data set to train a SVM to detect various types 
of behavioral primitives, beaconing being the first. We are using the LibSVM 
library and R to apply SVM to our data set2. Unlike previous research done in 
our community [20], we are applying SVMs to host-centric behavioral features. 
Most of the research to date has applied these models to network communications 
and raw flow data. Within our methodology we have transformed the data into a 

2  http://www.csie.ntu.edu.tw/~cjlin/libsvm/



host-centric features space before we apply our models. Scaling the data input into 
the SVM is important. Without doing so the attributes with the higher numeric 
ranges can dominate the models output. This is especially true when using linear 
or polynomial kernels.

Figure 7. Trained SVM Visualization. Beacon behavior is below and to the right of the hyperplane

To assess Beaconing event (Figure 7) detection accuracy in a threshold-independent 
manner we use Receiver Operating Characteristic (ROC) curves (Figure 8), i.e., 
plots of achievable sensitivity vs. false positive rates, where the Sensitivity/True 
Positive Rate (TPR) is defined as the ratio between the number of Beaconing events 
(TP) flagged by the algorithm and the total number of Known Beaconing events 
(P), and the False Positive rate (FPR) is defined as the ratio between the number of 
non-Beaconing events (FP) flagged by the algorithm and the total number of non-
Beaconing events (N).

Figure 8. ROC Curve Results. Three different data sets were used: internal assets, internal non-
assets, and external non-assets. Both the internal assets and internal non-assets exhibited 
a clean seperation between beaconing and non-beacon like behavior.



Our work focuses on two-class prediction problems (binary classification) where on 
class is a positive outcome and the other class has a negative outcome. We present 
contingency tables in the evaluation of a SVM in classifying pinging, or beacon-
like behaviors. 

Each point in this visualization (Figure 7) represents a days worth of host behaviors. 
The block circles are the non-pinging behaviors, and the red circles represent 
pinging behaviors. The light regions to the left and up are the predicted non-pinging 
behavior regions and the ping is the predicted pinging region. We are leveraging 
the use of SVMs to identify behaviors within the data set. We have selected work 
and source sink features to run against the model to detect beaconing behavior. We 
train the model with from our ground truth data sets focusing on pure beaconing 
behavior that exists, where source sink has a value of 1.

The training data set, taken from the internal vantage point, contained 6,635 hosts. 
The number of hosts exhibiting beaconing was 480. The following contingency 
table relates the true positive results to the predicted results and shows that 2 hosts 
where incorrectly predicted in the model.  We labeled the data based on source sink 
and work feature values. This data is biased based on our labeling. We will run the 
data later on more unbiased data sets.

The unknown data set 1 contained 68,165 hosts. There were very few hosts having 
behavior indicative beaconing. The number of hosts exhibiting beaconing was 39 
and had no false positive or negative errors in this data set.

The Test Data Set 2 (by see Table I) results show that our model was 86.9% accurate 
using the model developed from the internal training set. The contingency table 
provides an overview of the false positives (FP) 12,147 hosts, and false negatives 
(FN) of 50,031 hosts.

Table I. Contingency Table for Data Set 2

Predicted

Observed

0 1 Total

0 195902 12147 208049

1 50031 214583 264614

Total 226730 245933 472663



4. CONCLUSION
In this paper, we introduced a methodology for establishing behavior primitives 
in facilitating the creation of long-view situation awareness. Beaconing is just 
one primitive we will identity, and in our research are looking to grow that list of 
primitives to a few hundred 

We discussed the concept of a behavior aggregation and its use in accurately 
measuring beaconing. In our work, the establishment of behavior primitives as 
an integral step leading to future detection, trust and risk models detecting and 
anticipating emergent behavior of compromised networked devices. 

System behaviors can be used to develop models of trust to secure complex network 
[6], [19], [21], where trust is modeled from changes in past behaviors. 

We have presented a classification model that utilizes aggregate features to create 
behavior profiles using a prototype cyber data fusion system. Since Denning 
proposed an alert-centric intrusion detection model back in 1987 protecting 
hosts from threats [12], new detection models are needed to advanced persistent 
threats (ATPs) that are realized from multiple ingress points within a network. The 
foundation of our work resides in the use of profiles in: 

• The realization of behavior primitives to be later used in the knowledge 
discovery system, 

• Collaboration between the discovery system and the fusion system, and

• The future establishment of threats in terms of behavior graphs in the fusion 
system.
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