
1

On the Security of the
Blockchain BIX Protocol
and Certificates

Abstract: In recent years certification authorities (CAs) have been the target of multiple attacks
due to their sensitive role in internet security. In fact, with access to malicious certificates it
is possible to mount effective large-scale man-in-the-middle attacks that may become very
vicious, especially if the incident is not properly handled. Many attacks, such as the 2011 ones
against DigiNotar and Comodo, also show strong hints of state sponsorship; thus, CAs have
to be considered primary targets in a scenario of (possibly state-sponsored) large-scale cyber
attacks. Therefore, there is a need for a PKI protocol which is more resilient and without single
points of failure, such as the CAs. The BIX protocol is a blockchain-based protocol that allows
distribution of certificates linking a subject with their public key, hence providing a service
similar to that of a PKI but without the need for a CA. In this paper, we analyse the security
of the BIX protocol in a formal way. First, we identify formal security assumptions which are
well-suited to this protocol. Second, we present some attack scenarios against the BIX protocol.
Third, we provide formal security proofs that these attacks are not feasible under our previously
established assumptions.

Keywords: PKI, security proof, blockchain

Riccardo Longo
Department of Mathematics
University of Trento
Trento, Italy
riccardolongomath@gmail.com

Giancarlo Rinaldo
Department of Mathematics
University of Trento
Trento, Italy
giancarlo.rinaldo@unitn.it

Federico Pintore
Department of Mathematics
University of Trento
Trento, Italy
federico.pintore@unitn.it

Massimiliano Sala
Department of Mathematics
University of Trento
Trento, Italy
maxsalacodes@gmail.com

2017 9th International Conference on Cyber Conflict
Defending the Core
H. Rõigas, R. Jakschis, L. Lindström, T. Minárik (Eds.)
2017 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal use within
NATO and for personal or educational use when for non-profit or non-commercial
purposes is granted providing that copies bear this notice and a full citation on the
first page. Any other reproduction or transmission requires prior written permission
by NATO CCD COE.

2

1. INTRODUCTION

Blockchain is an emerging technology that is becoming widely adopted to solve a myriad of
problems where the classic centralised approach can be substituted by decentralisation. Indeed,
centralised computations, albeit efficient, are possible only if there is a trusted third party
(TTP) that everybody trusts. Nowadays, this is sometimes felt as a limitation and a possible
vulnerability.

The general idea behind blockchain technology is that blocks containing information are
created by nodes in the network, and these blocks are both public and cryptographically linked,
so that an attacker should be unable to modify them without the users noticing the tampering.
Also, the information contained in any block comes from the users and any user signs their own
information cryptographically. Some examples of blockchain applications can be found in [1],
[2] and [3].

A very sensitive security aspect which is usually kept centralised is the issuing of digital
certificates, which form the core of a public key infrastructure (PKI). A certificate contains
at least a cryptographic public key and it is digitally signed by a TTP. An example is X.509
certificates [4], mostly containing RSA public keys, which are widely used in the Internet for
establishing secure transactions (e.g., an e-payment with an e-commerce site like Amazon).
Since every user of a PKI must trust the certification authority (CA), which acts as a TTP, the
identity of a web site is checked by verifying the CA’s signature via the CA’s public key. In
a scenario of (possibly state-sponsored) large-scale cyber attacks, CAs may become primary
targets because of their strategic role in guaranteeing the authentication and security of most
web resources. Unfortunately, their role becomes a liability if they are compromised in the
attack, since it becomes impossible for the attacked infrastructure to distinguish fake servers
from real ones. In recent years, there have been multiple attacks against CAs, one of the most
notable being the one that brought DigiNotar to bankruptcy in 2011. In that case, an intrusion
led to the issuing of multiple malicious certificates and poor handling of the crisis left users
exposed (with evidence of exploitation of these certificates in Iran) for months, and almost
crippled the Dutch PKI. Other attacks saw prominent CAs among the targets, such as Comodo,
StartSSL and Verizon. For details about the listed attacks we refer to [5].

Therefore, there is the need for a PKI protocol which is more resilient to wide cyber attacks
and which does not introduce single points of failure, such as the CAs. This is exactly the idea
behind the so-called BIX certificates. The BIX protocol aims to distribute the role of the CAs
while preserving the security features. Indeed, the BIX protocol is designed with a blockchain-
like structure that provides integrity to data, showcasing the possibility of a distributed PKI.
A certificate is a block in a blockchain and a valid user interacting properly with the protocol
will be able to attach their certificate to the blockchain. The protocol works with very few
assumptions on the underlying network, but the original paper by Sead Muftic [6] focuses on
the innovative ideas and the technology behind them, leaving formal proofs of security as a
stimulating open research problem. Fascinated by his approach, in our present paper we prove
the security of the BIX protocol, while providing suitable formal models for threat scenarios.

3

We achieve this by giving a mathematical reduction of the attacks to the solution of some
(well-known) hard cryptographic problems. First, we suppose that an attacker tries to attach
their certificate to a pre-existing certificate chain without interacting properly with the protocol.
This is equivalent to having a malicious user trying to forge a valid certificate for themself (or
for an innocent user). The second attack scenario considers that an adversary tries to modify an
existing chain of certificates, distributing it as a proper chain.

In Section 2 of this paper we first define the security assumptions on which the security relies,
giving formal definitions of the cryptographic primitives (i.e., hash functions and digital
signatures) that act as the building blocks of the protocol, highlighting their security features
that will eventually guarantee the security of the whole construction. In other words, the first
step is the statement of supposedly intractable problems related to these primitives, which will
become the goal of the formal reduction.

In Section 3 we provide a sketch of Muftic’s scheme, highlighting the characteristics that are
instrumental in its security.

In Section 4 and Section 5, we first proceed to formalise the threat scenarios and their actors,
stating their capabilities and goals, in order to build realistic models of the attacks, suitable for
formal analysis. This translation of protocol and malicious interaction into a formal language
allows the reduction of an effective attack against the protocol to the disruption of the security
of well-studied and established cryptographic primitives, such as hash functions and digital
signatures.

Finally, we draw our conclusions regarding BIX protocol’s resiliency against large-scale cyber
attacks.

2. PRELIMINARIES

A. Formal Proofs of Security
In cryptography, the security of a scheme usually relies on the difficulty of a particular
mathematical problem. So, in a formal proof of security the goal is to model the possible
attacks on the scheme and prove that a successful breach implies the solution of a hard, well-
known mathematical problem. Some security parameters may be chosen in such a way that the
problem guaranteeing the security becomes almost impossible to solve in a reasonable time,
and thus the scheme becomes impenetrable. More formally, the scheme is supposed secure if an
Assumption holds on the related mathematical problem. Generally, an Assumption is that there
is no polynomial-time algorithm that solves a problem 𝒫 with non-negligible probability. For
example, see the problem in the following subsection on hash functions.

In a formal proof of security of a cryptographic scheme there are two parties involved: a
Challenger 𝒞 that runs the algorithms of the scheme and an Adversary 𝒜 that tries to break the
scheme making queries to 𝒞. In a query to 𝒞, depending on the security model, 𝒜 may request

4

private keys, the encryption of specific plaintexts, and so on. The goal of 𝒜 also depends on the
security model, for example it may be to recover a key, or to forge a digital signature.

Hence, the security proofs follow a general path. Suppose there is an Adversary 𝒜 that breaks
the scheme with non-negligible probability 𝑝1. A Simulator 𝒮 is built such that if 𝒜 breaks the
scheme then 𝒮 solves 𝒫. So, given an instance of 𝒫, 𝒮 runs a challenger 𝒞 that interacts with
𝒜, simulating the scheme correctly with non-negligible probability 𝑝2. Thus 𝒮 solves 𝒫 with
non-negligible probability, which is usually 𝑝1𝑝2, contradicting the Assumption.

To summarise, a formal proof of security is a reduction from the problem attack the scheme
to the problem solve 𝒫. Typically, 𝒫 is a well-studied problem, so the assumption on its
insolvability is accepted by the academic community.

B. Hash Functions
Commonly, the messages to be signed are compressed in fixed-length binary strings via a
cryptographic hash function. A hash function 𝐻 can be idealised as a function whose set of
inputs is the set of all possible binary strings, denoted by (𝔽2)∗, while its set of possible outputs
is the set of all binary strings of given length (called digest). Real-life hash functions have a
finite input set, but it is so large that can be thought of as infinite.

Cryptographic hash functions can need several security assumptions, however for the goals of
this paper the following definitions are sufficient.

Definition 1: Collision Problem for a Class of Inputs. Let 𝑟 ≥ 1l, ℎ:(𝔽1)∗ → (𝔽2)r
 be a hash

function, and 𝐿 ⊆ (𝔽2)𝑙
 be a class of inputs. The collision problem for ℎ and 𝐿 consists in finding

two inputs 𝑚1,𝑚2 ∈ 𝐿, with 𝑚1 ≠ 𝑚2, such that ℎ(𝑚1) = ℎ(𝑚2).

Definition 2: Collision Resistance of Hash Functions (Assumption 1). Let ℎ be a hash
function. We say that ℎ is collision resistant for a class of inputs 𝐿 if there is no polynomial-time
algorithm ℬ(ℎ, 𝐿) → {𝑚1,𝑚2} that solves the Collision Problem for ℎ and 𝐿 with non-negligible
probability. The complexity parameter is 𝑟.

C. Digital Signatures and ECDSA
With the name Digital Signature Scheme, we refer to any asymmetric cryptographic scheme for
producing and verifying digital signatures, consisting of three algorithms:

•	 Key Generation - 𝖪𝖾𝗒𝖦𝖾𝗇(𝜅) → (𝖲𝖪, 𝖯𝖪): given a security parameter 𝜅 generates a
public key 𝖯𝖪, that is published, and a secret key 𝖲𝖪.

•	 Signing - 𝖲𝗂𝗀𝗇(𝑚, 𝖲𝖪) → 𝑠: given a message 𝑚 and the secret key 𝖲𝖪, computes a
digital signature 𝑠 of 𝑚.

•	 Verifying - 𝖵𝖾𝗋(𝑚, 𝑠, 𝖯𝖪) → 𝑟 : given a message 𝑚, a signature 𝑠 and the public
key 𝖯𝖪, it outputs the result 𝑟 ∈ {𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾} that says whether or not 𝑠 is a valid
signature of 𝑚 computed by the secret key corresponding to 𝖯𝖪.

5

We measure the security of a Digital Signature Scheme by the difficulty of forging a signature
in the following scheme (which results in an existential forgery):

Definition 3: Digital Signature Security Game. Let 𝒟𝒮𝒮 be a Digital Signature Scheme. Its
security game, for an adversary 𝒜, proceeds as follows:

1)	 Setup
	 The challenger 𝒞 runs the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm, and gives to the adversary the public

key 𝖯𝖪.
2)	 Query
	 The adversary issues signature queries for some messages 𝑚𝑖 the challenger answers

giving 𝑠𝑖 = 𝖲𝗂𝗀𝗇(𝑚𝑖, 𝖲𝖪).
3)	 Challenge
	 The adversary is able to identify a message ≠ 𝑚𝑖 ∀𝑖, and tries to compute 𝑠 such that

𝖵𝖾𝗋(𝑚, 𝑠, 𝖯𝖪) = 𝖳𝗋𝗎𝖾. If 𝒜 manages to do so, they win.

Definition 4: Security of a Digital Signature Scheme (Assumption 2). A Digital Signature
Scheme 𝒟𝒮𝒮 is said to be secure if there is no polynomial-time algorithm 𝒜 (w.r.t.𝜅) that wins
the Digital Signature Security Game with non-negligible probability.

Ideally, a Digital Signature Scheme is designed in such a way that forging a signature in the
scheme is equivalent to solving a hard mathematical problem. Although this equivalence is
usually assumed but not proved, we say that the Digital Signature Scheme is based on that
mathematical problem. Several Digital Signatures Schemes (e.g. [7]), are based on the discrete
logarithm problem (DLOG), although other approaches exist, see e.g. [8], [9]. Among them, the
Elliptic Curve Digital Signature Algorithm (ECDSA), which uses elliptic curves, is widespread.
We refer to [10] for the details about the design of ECDSA.

If an attacker is able to solve the DLOG on an elliptic curve 𝔼, then they can break the
corresponding ECDSA. The converse is much less obvious. In [12], the authors provide
convincing evidence that the unforgeability of several discrete logarithm-based signatures
cannot be equivalent to the DLOG problem in the standard model. Their impossibility proofs
apply to many discrete logarithm-based signatures like DSA, ECDSA and KCDSA, as well as
standard generalisations of these. However, their work does not explicitly lead to actual attacks.
Assuming that breaking the DLOG is the most efficient attack on ECDSA, then nowadays
recommended key lengths start from 160 bits.

3. A DESCRIPTION OF BIX CERTIFICATES

In this section, we describe the BIX certificates and the structure containing them, called the BIX
Certification Ledger (BCL). BIX certificates share many similarities with X.509 certificates,
but the identities are anonymous. For a detailed comparison, we refer to [6, Section 2.1]; here
we only highlight their characteristics that are instrumental for our security proofs.

6

The BCL collects all the BIX certificates filling a double-linked list, in which every certificate
is linked to the previous and the next. To simplify our notation, we define the BCL as a ‘chain
of certificates’, CC, of 𝑛 certificates, that we may consider as a sequence:

CC: 𝑐0,…, 𝑐𝑛–1.

We denote with 𝜆 a function returning the length of a chain, that is 𝜆(CC) = 𝑛. Also, || denotes
string concatenation.

TABLE 1. STRUCTURE OF A BIX CERTIFICATE

Remark 1. The owner of the certificate 𝑐𝑖 has a double role: as a user, with 𝑐𝑖 that certificates
their identity; as an issuer, providing the certificate 𝑐𝑖+1 to the next user. In this way, there is
no need of a CA.

To each certificate corresponds a user having a pair private key/public key, which we denote
with 𝖲𝖪𝑖 and 𝖯𝖪𝑖. Certificate 𝑐0 is called the root certificate and certificate 𝑐𝑛–1 is called the tail
certificate.

In this paper, a certificate 𝑐𝑖 for 𝑖 = 1,…, 𝑛 − 2 is defined by the following fields (and subfields)
(necessary for our proofs of security), while the complete list can be found in [6]. Root and tail
certificates are described later on.

1) Header (𝑯𝑖)
In this field, there is general information such as timestamps and protocol version, but the
relevant information for our analysis is the Sequence number 𝑖, that is the identification
number of the certificate and also the position with respect to certificates of other BIX members.

7

2) Subject (𝑺𝑖)
The Subject contains the personal information that identifies the 𝑖-th user (𝑆𝑖), in particular:

•	 Subject BIX ID. The unique global identifier of the user who owns the certificate.
All BIX IDs contained in the Subject fields of a valid chain are distinct.

•	 Public key. The cryptographic public key of the owner of the certificate 𝖯𝖪𝑖.

3) Subject signature
This contains the signature over the Subject attributes via the private key 𝖲𝖪𝑖 associated to 𝖯𝖪𝑖.

4) Issuer (𝑺𝑖–1)
The Issuer field enjoys the same attribute structure as the Subject field, but it identifies the BIX
member who certified 𝑆𝑖, i.e., it contains the Subject attributes of 𝑐𝑖–2, which identifies 𝑆𝑖–2 (the
previous member in the BCI).

5) Issuer signature
This field contains the signature over the Issuer attributes created by the Issuer, that is, performed
via the private key 𝖲𝖪𝑖–1 associated to 𝖯𝖪𝑖–1.

6) Backward cross-signature
The Backward_Cross_Signature contains two signatures, one created by the Issuer 𝑆𝑖–1 and the
other created by the Subject 𝑆𝑖, over the same message: (𝐻𝑖||ℎ(𝑆𝑖–1)||ℎ(𝑆𝑖)). Note that this field
guarantees validity of the Header and binding between the Subject and the Issuer.

7) Next Subject (𝑺𝑖+1)
The Next_Subject field enjoys the same attribute structure of the Subject field, but it identifies
the BIX member who is certified by 𝑆𝑖, i.e., it contains the Subject attributes of 𝑐𝑖+1, which
identifies 𝑆𝑖+1 (the next member in the BCI).

8) Next Subject signature
This is the same field as Subject signature, except it is created by the Next Subject over its own
data, that is, performed via the private key 𝖲𝖪𝑖+1 associated to 𝖯𝖪𝑖+1.

9) Forward cross-signature
The Forward_Cross_Signature contains two signatures, one created by the Subject 𝑆𝑖 and the
other created by the Next Subject 𝑆𝑖+1, over the same message: (𝐻𝑖||ℎ(𝑆𝑖)||ℎ(𝑆𝑖+1)).

Note that this field guarantees binding between the current user acting as an issuer and the next
user (to whom the next certificate 𝑐𝑖+1 is issued).

We now describe the special certificates:

•	 The certificate 𝑐0, called the root certificate, has the same structure of a standard
certificate, but the Issuer field and the Subject field contain the same data. Indeed, the

8

root user 𝑆0 is not a normal user but rather an entity that initiates the specific BCL.
•	 The certificate 𝑐𝑛–1 has the same structure of a standard certificate, but some fields

are not populated because the next user is still unknown: Next_Subject, the Next_
Subject signature, the Forward_Cross_Signature. However, we underline that it is
regularly published in the chain and considered valid by other users.

	 The last user that owns the last certificate, 𝑐𝑛–1 will then become the issuer for the
next certificate (see Remark 1).

In the BIX protocol a new user requests the issuing of a new certificate through a query to the
BIX community, which is processed only by the user that owns the tail certificate of the chain.
For further details about the BIX protocol we refer to [6, Section 3.3].

4. CHAIN LENGTHENING ATTACK SCENARIO

The first attack scenario that we consider supposes that an attacker tries to attach their certificate
to a pre-existing certificate chain without interacting properly with the last user of the chain.
More precisely, the attacker 𝒜 should not interact with the subject of the last certificate in the
chain according to the BIX protocol.

A. The Security Game
For this attack, we consider a game where an adversary 𝒜 aims to add a certificate to the tail
of a certificate chain CC. We will call it Static Chain Lengthening (SCL) Game and it proceeds
as follows:

•	 The challenger 𝒞 builds a certificate chain CC according to the BIX protocol with
root certificate 𝑐0, using a hash function ℎ and a digital signature scheme 𝒟𝒮𝒮.

•	 𝒞 passes to 𝒜 the chain CC together with ℎ and 𝒟𝒮𝒮.
•	 𝒞 builds an honest verifier 𝒱 that given a certificate 𝑐∗ and a certificate chain CC∗

outputs 𝖳𝗋𝗎𝖾 if the root certificate of CC∗ is 𝑐0 and 𝑐∗ is a valid certificate of CC∗,
𝖥𝖺𝗅𝗌𝖾 otherwise.

•	 𝒜 tries to build a forged certificate chain CC′, 𝜆(CC′) = 𝑛 + 1, such that:
o	 CC′ truncated before the last certificate 𝑐′𝑛 is identical to CC if the Next_Subject

and Forward_Cross_Signature fields of the second-to-last certificate of CC′ are
not considered (i.e. we obtain CC′ by adding a certificate to CC and completing
𝑐𝑛–1 accordingly);

o	 user 𝑆𝑛–1 did not take part in the creation of 𝑐′𝑛 and so in particular they did
not perform the Forward_Cross_Signature of 𝑐𝑛–1 and the Backward_Cross_
Signature of 𝑐′𝑛;

o	 𝒱(𝑐′, CC′) = 𝖳𝗋𝗎𝖾 where 𝑐′𝑛 is the last certificate of CC′.

𝒜 wins the SCL Game if they build a CC′ that satisfies these last three points.

9

FIGURE 1. SCL GAME

Definition 5: Security against SCL. The BIX protocol is said to be secure against static
chain lengthening if there is no adversary 𝒜 that in polynomial time wins the SCL Game with
non-negligible probability.

B. Security Proof
In the following we will prove that winning the SCL game implies the contradiction of our
security assumptions introduced in Section 2.

Theorem 1. Let 𝒜 be an adversary that wins the SCL Game with probability 𝜖. Then a simulator
𝒮 might be built that, with probability at least 𝜖, either solves the Collision Problem, with 𝐿 the
set of all possible Subject fields, or wins the Digital Signature Security Game.

Proof. Let 𝒟𝒮𝒮 be the digital signature scheme and ℎ the hash function used in the BIX
protocol, and 𝐿 ⊆ (𝔽2)𝑙

 be the class of all possible Subject fields. We will build a simulator
𝒮 that simultaneously plays the Digital Signature Security (DSS) Game and tries to solve an
instance of the Collision Problem for 𝐿. It does so by simulating an instance of the SCL Game
and exploiting 𝒜. We will prove that if wins the SCL Game then either 𝒮 finds a solution for
the Collision Problem or 𝒮 wins the DSS Game.

𝒮 starts with taking as input an instance (ℎ, 𝐿) of the Collision Problem and a public key
𝖯𝖪∗ given by the 𝒟𝒮𝒮 challenger (i.e., the output of the first phase of the DSS Game for the
scheme 𝒟𝒮𝒮). 𝒮 then proceeds to build a certificate chain CC∗ following the BIX protocol. 𝒮
builds all but the last certificate normally, running the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm of the 𝒟𝒮𝒮 to choose
public keys for the Subject fields, so the corresponding secret keys are available to sign these
certificates properly. Then let 𝑛 = 𝜆(CC)∗ ≥ 2 (i.e. the number of certificates contained in CC∗),
𝑐∗0 its root certificate and 𝑐∗𝑛–1 the last one. 𝒮 sets the Subject of 𝑐∗𝑛–1, that we will denote by

10

𝑆∗𝑛–1, such that its public key is 𝖯𝖪∗, then it queries the challenger of the DSS Game to obtain
three valid signatures, respectively, on:

•	 the hash ℎ(𝑆∗𝑛–1) of this subject,
•	 (𝐻∗𝑛–1||ℎ(𝑆∗𝑛–2)||ℎ(𝑆∗𝑛–1)) for the Backward_Cross_Signature of 𝑐∗𝑛–1,
•	 (𝐻∗𝑛–2||ℎ(𝑆∗𝑛–2)||ℎ(𝑆∗𝑛–1)) for the Forward_Cross_Signature of 𝑐∗𝑛–2,

where 𝐻∗𝑛–2 is the Header of 𝑐∗𝑛–2, 𝐻∗𝑛–1 is the Header of 𝑐∗𝑛–1, and ℎ(𝑆∗𝑛–2) is the hash of the
Issuer of 𝑐∗𝑛–1, that is the Subject of 𝑐∗𝑛–2. In this way 𝒮 completes a certificate chain CC∗ of
length 𝑛, that it passes to 𝒜.

𝒜 responds with a counterfeit chain CC′ of length 𝜆(CC) = 𝑛 + 1. If CC′ is not valid (the chains
CC′ and CC∗ do not correspond up to the 𝑛-th certificate, or an integrity check fails) then 𝒮
discards this answer and gives up (𝒮 fails).

Otherwise, if the verifier outputs True, the chain CC′ is valid. Denote by 𝑙′ the string
(𝐻𝑛′||ℎ(𝑆𝑛–1′)||ℎ(𝑆𝑛′)) signed in the Backward_Cross_Signature of 𝑐′𝑛 (the last certificate of
CC′) by the private key corresponding to 𝖯𝖪∗. We have two cases:

•	 𝑙′ is equal to a message for which 𝒮 requested a signature.
	 Because of its bit-length, 𝑙′ may be equal to 𝑙∗0:=(𝐻∗𝑛–2 ||ℎ(𝑆∗𝑛–2)||ℎ(𝑆∗𝑛–1)) or

𝑙∗1:=(𝐻∗𝑛–1 ||ℎ(𝑆∗𝑛–2)||ℎ(𝑆∗𝑛–1)), but not to ℎ(𝑆∗𝑛–1). In either case, 𝑙′=𝑙∗0 or 𝑙′=𝑙∗1,
the equality implies that ℎ(𝑆𝑛′)=ℎ(𝑆∗𝑛–1), but the specification of the BIX protocols
supposes that different certificates have a different BIX ID in the Subject (and we
know that CC′ is valid). So 𝑆′𝑛–1 = 𝑆∗𝑛–1 ≠ 𝑆′𝑛, because of the BIX ID’s, but they have
the same hash so 𝒮 may submit (𝑆∗𝑛–1 , 𝑆′𝑛) as a solution to the Collision Problem.

•	 𝑙′ is different from all messages for which 𝒮 requested a signature.
	 In the Backward_Cross_Signature of 𝑐′𝑛 there is a signature 𝑠 of 𝑙′ such that
	 𝖵𝖾𝗋(𝑙′, 𝑠, 𝖯𝖪∗) = 𝖳𝗋𝗎𝖾 (remember that 𝖯𝖪∗ is the public key of the Issuer of 𝑐′𝑛 and

that CC′ is considered valid, so the signatures check out), so 𝒮 may submit (𝑙′, 𝑠) as
a winning answer of the challenge phase of the DSS Game.

So, if 𝒮 does not fail, it correctly solves the Collision Problem or wins the DSS Game, and since
𝒜 is a polynomial-time algorithm, 𝒮 is a polynomial-time algorithm too, given that the other
operations performed correspond to the building of a certificate chain and this must be efficient.
𝒮 might fail only if the chain given by 𝒜 is not valid (i.e. if 𝒜 fails). Since the simulation of the
SCL Game is always correct, 𝒜’s failure happens with probability 1 − 𝜖, then the probability
that 𝒮 wins is 1 − (1 − 𝜖) = 𝜖.

Corollary 1: SCL Security. If the DSS is secure (Assumption 1) and the hash function is
collision resistant for the class 𝐿 (Assumption 2), where 𝐿 is the set of all possible Subject
fields, then the BIX protocol is secure against the Static Chain Lengthening.

Proof. Thanks to Theorem 1, given a polynomial-time adversary that wins the SCL Game with

11

non-negligible probability 𝜖, a polynomial-time simulator might be built that with the same
probability either solves the Collision Problem or wins the DSS Game. So, let 𝐶 be the event
‘solution of the Collision Problem’ and 𝐷 be the event ‘victory at the DSS Game’. We have that

𝜖 = 𝑃(𝐶 ∨ 𝐷) ≤ 𝑃(𝐶) + 𝑃(𝐷)

The sum of two negligible quantities is itself negligible, so the fact that 𝜖 is non-negligible
implies that at least one of 𝑃(𝐶) and 𝑃(𝐷) is non-negligible, and this means that Assumption 1
or Assumption 2 is broken.

Remark 2. The infeasibility of the above attack guarantees also the non-repudiation property
of the last certificate in the chain. That is, if Alice (the user of the second-to-last certificate) tries
to repudiate Bob (the user of the last certificate), with an eye to issuing another certificate, then
Bob might claim his rightful place showing a version of the chain containing his certificate. This
chain is then the proper one, since no one can attach its certificate to the tail of the certificate
chain without being a proper user.

Remark 3. We have assumed (see Assumption 2) that 𝒟𝒮𝒮 is secure against existential forgery,
but in the proof of Theorem 1 the freedom of the attacker in the choice of the message to be
signed is limited. In fact, it has to forge a signature of 𝑙′: = (𝐻𝑛′||ℎ(𝑆𝑛–1′)||ℎ(𝑆𝑛′)), where
ℎ(𝑆𝑛–1′) is given by 𝒮, and even 𝐻𝑛′ is not completely controlled by 𝒜 (e.g. the sequence
number is given). So, a large part of the string to be signed is beyond the control of the forger,
hence the challenge is something in between an existential and a universal forgery, which
is the weaker assumption on the Digital Signature Scheme (𝒟𝒮𝒮). However, the security of
𝒟𝒮𝒮 against universal forgery is not sufficient for our purposes, so we settled on the stronger
assumption.

5. CERTIFICATE TAMPERING

In the second attack scenario that we consider, a malicious attacker tries to corrupt a chain of
certificates built on a trusted root certificate, resulting in another chain that may redistribute
as a proper chain with the same root but with altered information. As we will see, the security
against this attack would guarantee that no external attacker can modify any certificate in the
chain, including deleting or inserting a certificate in any non-ending point, as long as the root
certificate is safe (no unauthorised use), secure (cannot be broken) and public (anyone can check
it). If the security proved in the previous section is also considered, then a certificate chain is
also secure at the end point (no one can wrongfully insert themself at the end or disavow the last
certificate) achieving full security from external attacks to the BIX protocol.

A. The Security Game
For this attack, we consider a game where an adversary 𝒜 aims to modify information contained
in the Subject field of a certificate 𝑐𝑖 contained in a certificate chain CC, with 1 ≤ 𝑖 ≤ 𝑛 − 1,

12

𝑛 = 𝜆(CC). We will call it the Static Tampering with Subject (STS) Game and it proceeds as
follows:

•	 The challenger 𝒞 builds a certificate chain CC with root certificate 𝑐0, according to
the BIX protocol and using a hash function ℎ and a Digital Signature Scheme 𝒟𝒮𝒮.
Let 𝑛 = 𝜆(CC).

•	 𝒞 passes to 𝒜 the chain CC together with ℎ and 𝒟𝒮𝒮.
•	 𝒞 builds an honest verifier 𝒱 that, given a certificate 𝑐∗ and a certificate chain CC∗

outputs True if the root certificate of CC∗ is 𝑐0 and 𝑐∗ is a valid certificate of CC∗, False

otherwise.
•	 𝒜 tries to build a forged certificate chain CC′ such that:

o	 exists 1 ≤ 𝑖 ≤ 𝑛 − 1 such that Subject fields of 𝑐𝑖 and 𝑐′𝑖 are different, that is,
	 𝑆𝑖≠ 𝑆𝑖′.
o	 𝒱(𝑐𝑖′, CC′) = 𝖳𝗋𝗎𝖾

𝒜 wins the STS Game if they successfully build such a CC′ satisfying the last two items.

FIGURE 2. STS GAME

Definition 6: Security against STS. The BIX protocol is said secure against Static Tampering
with Subject if there is no adversary 𝒜 that in polynomial time wins the STS Game with non-
negligible probability.

B. Security Proof
In the following, we will prove that winning the SCL game implies the contradiction of our
security assumptions introduced in Section 2.

13

Theorem 2. Let 𝒜 be an adversary that wins the STS Game with probability 𝜖. Then a simulator
𝒮 might be built that with probability at least either solves the Collision Problem, where 𝐿
is the set of all possible Subject fields, or wins the Digital Signature Security Game, where 𝑛 is
the length of the certificate chain that 𝒮 gives to 𝒜.

Proof. Let 𝒟𝒮𝒮 be the Digital Signature Scheme and ℎ the hash function used in the BIX
protocol, and 𝐿 ⊆ (𝔽2)𝑙

 be the class of all possible Subject fields. We will build a simulator
𝒮 that simultaneously plays the digital signature security (DSS) Game and tries to solve an
instance of the Collision Problem for 𝐿. It does so by simulating an instance of the STS Game
and exploiting 𝒜. We will prove that when 𝒜 wins the STS Game, at least one in 𝑛 − 1 times
𝒮 is successful. To be more precise, if 𝒮 does not find a solution for the collision problem then
𝒮 wins the DSS Game.

𝒮 starts with taking as input an instance (ℎ, 𝐿) of the Collision Problem and a public key 𝖯𝖪∗
given by the 𝒟𝒮𝒮 challenger (i.e., the output of the first phase of the Digital Signature Security
Game for the scheme 𝒟𝒮𝒮).

𝒮 now proceeds to build a certificate chain CC following the BIX protocol, as follows. First, 𝒮
chooses 𝑛 ≥ 2 (possibly depending on the 𝒜’s requirements). Then 𝒮 selects 1 ≤ 𝑘 ≤ 𝑛 − 1 at
random to be the index of a certificate 𝑐𝑘 in CC. 𝒮 builds the first 𝑘 − 1 certificates normally,
running the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm of the 𝒟𝒮𝒮 scheme to choose public keys for the Subject fields,
so the corresponding secret keys are available (to 𝒮) to sign these certificates properly. So
𝑐0,…, 𝑐𝑘–3 are complete certificate and 𝑐𝑘–2 is a tail certificate. Then it sets the Subject of 𝑐𝑘–1

such that its public key is 𝖯𝖪∗, and a header 𝐻𝑘–1. It queries the challenger of the DSS Game to
obtain three valid signatures, respectively, on:

•	 the hash ℎ(𝑆𝑘–1) of this subject,
•	 (𝐻𝑘–1||ℎ(𝑆𝑘–2)||ℎ(𝑆𝑘–1)) for the Backward_Cross_Signature of 𝑐𝑘–1 (if 𝑘 > 1),
•	 (𝐻𝑘–2||ℎ(𝑆𝑘–2)||ℎ(𝑆𝑘–1)) for the Forward_Cross_Signature of 𝑐𝑘–2 (if 𝑘 > 1),

where we recall that 𝐻𝑘–2 is the Header of 𝑐𝑘–2, 𝐻𝑘–1 is the Header of 𝑐𝑘–1, ℎ(𝑆𝑘–2) is the
hash of the Issuer of 𝑐𝑘–1. Then 𝒮 builds the 𝑘 + 1-th certificate, choosing a 𝐻𝑘 and 𝑆𝑘, using
again the 𝖪𝖾𝗒𝖦𝖾𝗇 algorithm to sign 𝑆𝑘, querying the DSS challenger for two valid signatures,
respectively, on:

•	 (𝐻𝑘||ℎ(𝑆𝑘–1)||ℎ(𝑆𝑘)) for the Backward_Cross_Signature of 𝑐𝑘,
•	 (𝐻𝑘–1||ℎ(𝑆𝑘–1)||ℎ(𝑆𝑘)) for the Forward_Cross_Signature of 𝑐𝑘–1,

where we recall that 𝐻𝑘 is the Header of 𝑐𝑘 and ℎ(𝑆𝑘) is the hash of the Subject of 𝑐𝑘. Finally, 𝒮
completes the chain CC (following the protocol and choosing everything, including the 𝖲𝖪𝑖’s),
so that it has 𝑛 certificates, and passes it to 𝒜.

𝒜 responds with a counterfeit chain CC′. 𝒜 fails if and only if CC′ is not valid, which happens
when there is no 1 ≤ 𝑖 ≤ 𝑛 − 1 such that 𝑆′𝑖≠ 𝑆𝑖 or when the integrity check of the verifier fails.

14

If we are in this situation, 𝒮 discards CC′ and gives up (𝒮 fails).

Otherwise, let 1 ≤ 𝑖 ≤ 𝑛 − 1 be the first index for which 𝑆′𝑖≠ 𝑆𝑖. Since 𝑘 is chosen at random,
we have that 𝑘 = 𝑖 with probability . In this case, there are two possibilities:

•	 ℎ(𝑆𝑘) = ℎ(𝑆′𝑘), but 𝑆𝑘≠𝑆𝑘′ for hypothesis, then 𝒮 outputs the pair (𝑆𝑘, 𝑆′𝑘) as a
solution to the collision problem.

•	 Otherwise, we have that 𝑆𝑘–1 = 𝑆𝑘–1′ and 𝑃𝐾∗ is the public key of the issuer of
𝑐𝑘′. Then in the Backward_Cross_Signature of the certificate 𝑐𝑘′ there is the digital
signature 𝑠 for which holds the relation 𝖵𝖾𝗋((𝐻𝑘′||ℎ(𝑆𝑘–1′)||ℎ(𝑆𝑘′)), 𝑠, 𝖯𝖪∗) = 𝖳𝗋𝗎𝖾
(remember that CC′ is considered valid, so the signatures check out). So 𝒮 may
submit ((𝐻𝑘′||ℎ(𝑆𝑘–1′)||ℎ(𝑆𝑘′)), 𝑠)

•	 as a winning answer of the challenge phase of the DSS Game, since it is different
from the messages 𝒮 queried for signatures, that are

	 [ℎ(𝑆𝑘–1), (𝐻𝑘–1||ℎ(𝑆𝑘–2)||ℎ(𝑆𝑘–1)), (𝐻𝑘–2||ℎ(𝑆𝑘–2)||ℎ(𝑆𝑘–1)),
	 (𝐻𝑘||ℎ(𝑆𝑘–1)||ℎ(𝑆𝑘)), (𝐻𝑘–1||ℎ(𝑆𝑘–1)||ℎ(𝑆𝑘))]

So 𝒮 correctly solves the collision problem or wins the DSS Game at least when 𝒜 wins and
𝑖=𝑘. The probability of this event is at least the probability of the two cases and so it is

Note also that since 𝒜 is a polynomial time algorithm, so is 𝒮.

Corollary 2: STS Security. If the DSS is secure (see Assumption 2) and the hash function is
collision resistant for the class 𝐿 (Assumption 1) where 𝐿 is the set of all possible Subject fields,
then BIX protocol is secure against the Static Tampering with Subject.

Proof. For the BIX protocol to be functional the length of the chain must be polynomial. So,
for the result of Theorem 2, given a polynomial time adversary that wins the STS Game with
non-negligible probability 𝜖, a polynomial time simulator might be built that with probability at
least either solves the Collision Problem or wins the DSS Game, where 𝑛 is the length of
the chain. So, let 𝐶 be the event ‘solution of the Collision Problem’ and 𝐷 be the event ‘victory
at the DSS Game’. We have that

≤ 𝑃(𝐶 ∨ 𝐷) ≤ 𝑃(𝐶) + 𝑃(𝐷)

The fact that is non-negligible implies that at least one of 𝑃(𝐶) and 𝑃(𝐷) is non-negligible,
and this means that Assumption 1 or Assumption 2 is broken.

15

6. CONCLUSIONS

In this paper, the BIX certificates protocol proposed in [6] has been formally analysed from
a security point of view. In particular, the security against static attacks that aim to corrupt a
chain has been proven, reducing the security to the choice of adequate hash function and digital
signature scheme. For this reason, the security of ECDSA, the main DSS nowadays, has also
been discussed.

The current BIX protocol is still insufficiently complete for it to be considered a full PKI.
Possibly, the main lack is the absence of a procedure to revoke or to renew certificates. This is
an open problem and further research effort is needed. However, the security proofs given in
this paper show how the BIX infrastructure is a reliable structure for storing public identities
in a distributed and decentralised way. While a targeted attack on a CA can result in the issuing
of malicious certificates or revocation of valid ones, shattering every certificate it issued, in the
case of a cyber attack BIX certificates could still be trusted because no single entity could be
targeted and exploited to take down the entire system. Indeed, we suppose that BIX certificates
are issued and distributed in peacetime, so that when an emergency breaks out the infrastructure
is ready to cope with possible attacks. Indeed, the properties proven in this work guarantee the
integrity of the information contained in the certificate chain, so users can rely upon it even in
the middle of a cyber attack. It is true that a targeted offensive against the owner of the last
certificate would disrupt the protocol, preventing the issuing of new certificates. Nevertheless,
if this user is taken down, the validity of existing certificates will still hold.

It may seem that the BIX protocol relies on a trusted third party, the messaging system.
However, it is not a third party, as highlighted by Muftic [6], since it only passively broadcasts
certificates and for purely addressing purposes it verifies the uniqueness of BIX identifiers (in
Muftic’s construction the IM protocol used is [13]).

Our conclusion is that a PKI system based on the BIX protocol is more resilient to a wide-scale
cyber attack than the standard PKI protocols based on CAs.

Regarding related research, the idea of using a public ledger for digital identities has prominent
applications in the distribution of Bitcoin wallet addresses (see for example [14]), but there
are also applications that try to leverage the functionalities of cryptocurrencies to improve
PKI. For example, Matsumoto and Reischuk [15] exploit smart contracts on Ethereum to deter
misbehaviour of CAs and to incentive extended vigilance over CAs’ behaviour. However, we
fear that this is not sufficient in case of a large-scale cyber attack, because the financial losses
that this solution enforces would affect the attacked CA and not the attackers themselves.

REFERENCES

[1]	 S. Wilkinson et al., Storj: A Peer-to-Peer Cloud Storage Network, 2014 [Online]. Available: http://storj.io/
storj.pdf.

[2]	 M. Araoz, Proof of Existence, 2015 [Online]. Available: https://proofofexistence.com/about.

16

[3]	 Ethereum Foundation, Ethereum Project, 2015 [Online]. Available: https://www.ethereum.org/.
[4]	 D. Cooper et al., ‘Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List

(CRL) Profile’, IETF RFC 5280, 2008.
[5]	 A. Niemann, and J. Brendel, A survey on CA compromises, 2013 [Online]. Available: https://www.cdc.

informatik.tu-darmstadt.de/fileadmin/user upload/Group CDC/Documents/Lehre/SS13/Seminar/CPS/
cps2014 submission (Vol. 8).

[6]	 S. Muftic, ‘Bix certificates: Cryptographic tokens for anonymous transactions based on certificates public
ledger’, Ledger, vol. 1, pp. 19–37, 2016.

[7]	 T. Elgamal, ‘A public key cryptosystem and a signature scheme based on discrete logarithms’, IEEE Trans.
on Inf. Th., vol. 31, no. 4, pp. 469–472, 1985.

[8]	 M. O. Rabin, ‘Digital signatures and public-key functions as intractable as factorization’, MIT laboratory
for computer science, MIT/LCS/TR-212, Jan. 1979.

[9]	 R. L. Rivest, A. Shamir, and L. M. Adleman, ‘A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems’, Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[10]	 D. Johnson, A. Menezes, and S. Vanstone, ‘The Elliptic Curve Digital Signature Algorithm (ECDSA)’,
Certicom, 1998.

[11]	 B. Preneel, ‘The State of Cryptographic Hash Functions’, LNCS, vol. 1561, pp. 158–182, 1999.
[12]	 P. Paillier and D. Vergnaud, ‘Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log’,

LNCS, vol. 3788, pp. 11–20, 2005.
[13]	 XMPP Standards Foundation, Extensible Messaging and Presence Protocol, 2015 [Online]. Available:

https://www.xmpp.org/.
[14]	 BitID, BitID Open Protocol, 2015 [Online]. Available: http://bitid.bitcoin.blue/
[15]	 S. Matsumoto and R. M. Reischuk, IKP: Turning a PKI Around with Blockchains, 2016 [Online].

Available: https://eprint.iacr.org/2016/1018.pdf.

