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Abstract - An abstract form of knowledge representation is
used and knowledge lattices are introduced. A formal concept
of knowledge system has been defined independently of its
implementation in two different but equivalent ways: first, as a
free deductive system, and second, as an algebraic system
with notation-denotation relation supplied with derivation
rules. Operations on knowledge systems are analyzed. Lattices
of knowledge systems and abstract goals on knowledge
systems are described and used for analysis of solvability of
goals.
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1 Introduction

As the knowledge-based systems are growing in size and
complexity, it has become necessary to describe them on a
more abstract level than their implementation. It is reasonable
to use algebraic structures and logical means for definition
and analysis of knowledge and knowledge-based systems. The
present work considers modularity of knowledge-based
systems, and focuses on properties of their building blocks --
knowledge modules. We call such a module a knowledge
system, and represent it as a deductive system. There is an
evidence that knowledge used by experts is modular [2]. Also
complex knowledge-based software has modular knowledge
architecture [7,3]. The aim of this work is to analyze a
structure of a set of possible knowledge systems on an
abstract level. The main result of this analysis is that
knowledge systems constitute lattices with interesting
propertics that are related to the knowledge handling
capabilities — to the solvability of goals.

We begin the analysis with definitions of knowledge and
semantic systems. The latter can be considered as pre-
ontologies, i.e. the ontologies without the usage of relations
between the concepts. An example of a simple definition of
knowledge is the one given by M. Firebaugh [1]: “Knowledge
is information in a meaningful context”. A. Newell, R. Young
and T. Poek give another definition of knowledge [8] that is
more detailed, and applicable only in a specific context:
“Knowledge is a system of patterns within the bulk the
available units of information based upon experiences; these

patterns are generalized, labeled and organized, into a
relational network with a particular architecture, knowledge
implies one ability to use it efficiently for reasoning and
decision making.” We give a formal definition of knowledge
in Section 2, where the notions of notation-denotation relation
and semantic systems are introduced and some simple
theorems about the semantic systems are presented.

Sections 3, 4 and 5 are dedicated to knowledge systems,
relations between them and operations on knowledge systems.
Our definition of a knowledge system relies on the ideas of S.
Maslov presented in his book {61, where he demonstrates the
usage of deductive systems for knowledge handling in several
domains. Section 6 introduces goals as the means of accessing
knowledge in a knowledge system and describes a lattice of
goals. Section 7 includes the main results — a definition of
lattices of knowledge systems and four theorems about these
lattices.

2 Knowledge representation and semantic

systems

In the present work we rely on a fundamental binary
relation — notation-denotation relation between the sets of
notations and denotations [5]. We are going to use the symbol
[ as a notation of the notation-denotation relation. If a meaning
(i.e. the denotation) of A is B, then we write AJB.

Definition 1. An ordered pair (A,B) is called
knowledge, iff A/B [4].

Remark. The pair in the definition above can be
considered as a way of knowledge representation. In [5]
Lorents analyzes its relatedness to several other knowledge
representation forms.

We consider often a set of notations S and a set of
denotations (i.e. meanings) M, when speaking about
knowledge. This gives us an idea to use an algebraic system
for analyzing knowledge representation.

Definition 2. An algebraic system (S, M; /) where S and
M are non-empty sets of notations and denotations, and / is a
notation-denotation relation between S and M is a semantic
system.
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Remark. A semantic system can be called also a pre-
ontology — that is an ontology without derivation possibilities.
To get an ontology from a pre-ontology, one has to add
derivation rules that enable one to reason about the knowledge
elements in a suitable way. For instance, at least rules of
inheritance should be added in order to get an ontology in the
conventional sense.

It may happen that we have to extend a set of
denotations M of a semantic system by introducing new
elements, say the elements of a set Q. Then we need at least
one new notation that we can call, for instance, something to
denote the new meanings. In this way we get a new semantic
system.

Definition 3. The semantic system (§°, M’; /’) is called
a primitive extension of a semantic system (5, M; /) if
S’=Sfsomething}, M’-M=Z, McM’ and f =/ v
{ (something,y) |y e M’-M)]. (The notation-denotation relation
has been extended with pairs (somerhing,y)) for all new
meanings y.)

It is sometimes needed to create a new semantic system
from existing ones by joining the existing systems. This can be
done by an operation called sum.

Definition 4. A sum {(S’, M’; /') of semantic systems
(S5, My; /) and (S5, Ma; /) is the semantic system with S’= S,
v S, M= M; o M, and 4 =/,u,é. The sum operation is
denoted by @.

Theorem 1. The sum of semantic systems is an
idempotent, commutative and associative operation.

Proof. Follows from the same properties of the union
operation of sets, taking into account the definition of sum.

Corollary. Any set of semantic systems that is closed
for the operation of sum is a semilattice.

Remark.  Sum of semantic systems may have an
unwanted property that some notation will denote
contradictory or discrepant meanings. This happens, if the
notation is used in the two initial semantic systems in
~different meaning”, i.e. it is used for different purposes. This
can be said more precisely as follows.

Example. One cook can denote for brevity salt by sina
recipe. But another cook can use the same s for denoting
sugar. Taking a sum of their semantic systems would be
disastrous.

Definition 5. A semantic system is consistent, if its
notation-denotation relation does not give contradictory
meanings for any notation. Semantic systems are harmonious,
if their notation-denotation relations do not give contradictory
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meanings on the union of their sets of meanings for any
notation.

Remark. This definition can be made precise by
introducing a noncontradiction relation C on the union of the
sets of meanings. This relation is reflecsive and symmetric. If
it is transitive as well, it is an equivalence relation, Being
consistent requires that a notation always denotes meanings
bound by this relation. Being consistent is expressed for a
semantic system by the formula

Vs(( Ty Fmasfn; &s fng) SC(my,my)),

and being harmoninous is expressed for two semantic systems
(S1, My; /i)and (S5, My ;) by the formula

Vs(( Ty Fmos fym &s omz) 5C(my,ms)).

Definiton 6. Harmonization of consistent semantic
systems (S, M;; /) and (5 M, 1) is building new
harmonious semantic systems (5°;, M’;; f1)and (575 M’y
/), where M,=M’,, M;=M,, and any disharmonious notation
in §;S; will be changed to two new different notations.

Corollary. Harmonization gives new harmonious
semantic systems with the unchanged sets of denotations.

Remark. The method of harmonization described by
Definition 6 can be applied to a single semantic system as
well, in order to make it consistent.

Theorem 2. If the sets of notations of consistent
semantic systems do not have common elements, then the
semantic systems are harmonious, and so is their sum.

Proof. Consistent semantic systems can be
disharmonious only if they have common notations.

Definiotion 7. A product (S’, M’; f) of semantic
systems (S;, My, f,) and (53 M, /ﬁ is the semantic system
with §’= §;1S, M’= M;~M, and /' =/i~f;. The product
operation is denoted by the symbol &.

Theorem 3. The product of semantic systems is an
idempotent, commutative and associative operation.

Proof. Follows from the same properties of the
intersection of sets.

Theorem 4. A set of semantic systems closed for
operations of sum and products is a lattice with a zero
element.

Proof. Follows from Theorems 1 and 3 and the
definition of a lattice.
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3 Knowledge systems

Semantic systems describe knowledge representation in
an abstract way. Now we are going to add abstract description
of knowledge handling. The aim of this section is to define the
concept of a knowledge system that includes both knowledge
representation and knowledge handling features. We are going
to do this in a way that is independent of any particular
implementation, and is usable also in the analysis and
explanation of architectures of knowledge-based applications.
Unlike semantic systems, a knowledge system must include
means for knowledge handling — for deriving new notations
from given ones. This leads us to a concept of the deductive
system. For detailed discussion of this formalism we refer to
Maslov [6].

Conventional concept of a deductive system is defined
as a language for representing objects, a set of initial objects
and derivation rules for generating new objects from given
objects. (See, for instance, Maslov [6].) We are going to use a
slightly different concept -- a free deductive system, where
initial objects are not fixed. Giving some initial objects in the
language of a free deductive system makes it a conventional
deductive system.

As we have shown already, notations for knowledge,
called here also knowledge objects have some meaning that
may be objects or maybe even some effects on the
environment where they exist. To make it precise, one has to
consider a collection of possible meanings and a mapping
from notation to meanings. This can be formalized as an
interpretation of notations. One can, instead of the mapping,
consider a relation that binds notations with their meanings.
This is a relation of notation-denotation defined in Section 2.

Definition 8. Free deductive system is a language of
objects and rules for generating new objects from given
objects.

Definition 9. Interpretation of a (free) deductive system
is a set M of entities that are possible meanings of objects of
the deductive system, and a relation / that binds at least one
meaning with every object, and binds at least one object (a
notation) with every meaning included in M. The relation / is
called a relation of notation-denotation [7].

Definition 10. Knowledge system is an interpreted free
deductive system [7].

We have already defined semantic systems that include
a set of notations, a set of meanings (denotations) and a
notation-denotation relation, therefore we can use this concept
in a definition of knowledge system, and give the alternative
definition of a knowledge system.,

Definition 11. Knowledge system is a pair of a semantic
system and a set of derivation rules that operate on the
notations of the semantic system: ({5, M; ,ﬂ, D) where Sis a
set of notations of the semantic system, M is a set of meanings
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(denotations of the semantic system), /is a notation-denotation
relation that defines interpretation of notations of the
knowledge system, and D is a set of derivation rules on the set
S.

The two definitions of a knowledge system are in all
respects the same. The first uses explicitly the concept of a
deductive system and follows the way laid out by S. Maslov,
the second uses the concept of a semantic system and relates
the knowledge systems to the former works of P. Lorents.

Examples of free deductive systems are natural
languages with one derivation rule that generates a new
sequence of sentences ST for amy correct sequences of
sentences S and T of a language. This rule can be written as
follows:

S T
ST

If we are able to get a meaning for any sequence of
sentences, and can find a sentence denoting a given meaning,
we can say that we have a knowledge system. In other words —
we a have a knowledge system, if and only if we understand
the language.

Remark. A natural method to get a meaning of a new
notation generated by a rule is to construct it from meanings
of other notations used in the rule. In the present example of
natural language texts, one should take the union of meanings
of given texts and add the meaning of interdependencies of
the texts, e.g. ellipsis in the second text etc.

4 Semantic connectedness and conservative

extension of knowledge systems

Let us have knowledge systems K, and K, with sets of
notations S, S, sets of meanings M,, M,, sets of derivation
rules D;, D, and notation-denotation relation /1, A respectively.

Several knowledge systems may have the sets of
meanings with nonempty intersection. This is the case, for
instance, with systems of classical logic that have different sets
of inference rules, or programming languages for one and the
same computer, and even natural languages for identical
cultures. (The cultures depend to some extent on the language,
hence there are no absolutely identical cultures with different
languages, but the sets of meanings of the cultures intersect to
alarge extent.)

Definition 12. We say that knowledge systems are
semantically connected, if they have the sets of meanings with
nonempty intersection.

A degree of semantic connectedness of knowledge
systems with measurable sets of meanings can be easily
defined. A degree of connectedness of knowledge systems
with the sets of meanings M, and M, and a measure M given on
the sets is
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CKLK,) = p(My N M)/ (M O M),

where ({H) denotes the measure of the set H. (It is natural to
take the number of elements of a set as its measure in the case
of finite sets.)

Definition 13. Conservative extension of a knowledge
system K with set of notations S and set of meanings M on a
set of meanings M’, Mc M’, is a knowledge system with set of
meanings M’, set of notations S C {something}, where
something is a new denotation that denotes every element of
the set MM, derivation rules of K, and notation-denotation
relation of K extended by new pairs (something,x) for every
XeEM"\M.

Remark. A conservative extension of a knowledge
system K=(0,D) defined as a pair of a semantic system Q and
a set of derivation rules D is (Q’,D), where Q’ is a primitive
extension of Q.

Theorem 5. An object z is derivable from objects X,...,y
in a conservative extension K’ of a knowledge system K iff it
is derivable from the same objects in K.

Proof: The derivation rules of K are neither applicable
to something, nor can they produce something, hence the
derivability in K’ is the same as in X,

This theorem says that notation something can denote
many things -- it introduces an open world. However, one can
reason only about the known part of the world, and does not
reason about the meanings that are indistinguishable in the
knowledge system.

S Operations on knowledge systems

Like in formal languages, one can define a variety of
operations (e.g. sum and product) between semantically
connected knowledge systems. Sum and product of knowledge
systems are defined as follows.

Definition 14. Sum of knowledge systems K|, K,
denoted by © is a knowledge system over the set of meanings
M;v M, with the set of notations S’; U S’,, the notation-
denotation relation f 1f; and the set of derivation rules
D’;uD’,, where the the sets S, , S’ .f), f, D’,D’, are
obtained from S,, S5, ,6, b D;,D; by renaming the notations
with contradictory meanings in S, NS, so that the
contradiction disappears.

Definition 15. Product of knowledge systems K; and K,
denoted by ® is a knowledge system with the the set of
notations S; ~ S,, set of meanings M; n M,, the set of
derivaton rules D’; » D’,, the notation-denotation relation A
M J, where D’;, D’; are obtained from D,, D, by excluding all
rules that include notations not belonging to S; A S,.
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6 Lattice of goals

It is assumed that a knowledge system can be used for
answering questions or, more generally, finding solutions for
given goals. Let us have a finite set G of atomic goals defined
on a knowledge system K. We do not restrict a meaning of an
atomic goal. The only restriction is that an atomic goal has to
be defined only in terms of notations, i.e. on the syntactic
level. In particular, it can be just a notation that has to be
derived in the knowledge system. An atomic goal can be
solved/satisfied on a knowledge system by using the existing
knowledge and inference engine of the system. Usually not all
atomic goals can be solved, and a set of solvable atomic goals
for a knowledge system can be defined.

Definition 16. A goal on a knowledge system K is a
subset of the set G of atomic goals of the knowledge system K.
A goal is solved iff all its elements (atomic goais) are solved.

Theorem 6. The set of goals constitutes a Boolean
lattice with the set theoretic operations union U and
intersection N,

Proof. A set of subsets of a finite set constitutes a
Boolean lattice.

The definition of an atomic goal is quite abstract. We
give here an example of a set of atomic goals in order to
explain the meaning of this definition. Let us have a
knowledge system of computability of values of variables,
where the set of variables is a finite set V. The set of atomic
goals will be G={ w—v | wcV & veV ). An atomic goal
w—>» has the meaning “compute a value of v from the values
of elements of w”.

7 Lattice of knowledge systems

The following shows that consistent semantic systems
(pre-ontologies) play an important role in building knowledge
systems. They enable one to avoid the contradictory meanings
of elements when a union S; U S, of notations of knowledge
systems is built, and make the results of the sum of knowledge
systems easily observable. A sum of knowledge systems with
consistent semantic systems will always have a set of notations
$;U Sy, a notation-denotation relation J U and a set of
derivation rules D;UD,, because operating in a consistent
semantic system (pre-ontology) guarantees that S, S, will not
have elements with contradictory meanings. This gives us a
nice symmetry of operations @ and ®.

Naturally, we could agree that we work in one and the
same ontology, because this will also guarantee the
consistency of notations. However, this would be an
unnecessary strong restriction. The following presents this in
exact terms.
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Definition 17. Let us have a consistent semantic system
O with a set of notations S, a set of meanings M and a
notation- denotation relation / Knowledge systems K;, K, with
the sets of notations S; c S, S, — S, sets of meanings _/fS,),
£S2), whose notation-denotation relations are restrictions of /
on S; and S; are called ontologically consistent with respect to
the semantic system O.

Theorem 7. Sum of ontologically consistent knowledge
systems K; and K, has the set of notations §; _S,, the
notation-denotation relation / ,uf 2 and the set of derivation
rules D; v D,.

Proof. The sets S; and S, do not have elements with
different meanings, hence no renaming is performed.

Theorem 8. A set of ontologically consistent knowledge
systems closed for operations of sum and products is a lattice
with a zero element and a relation of partial order < defined as
K,<K; iff $;c5; and /,f .

Proof. It follows from the definitions of sum and
product, and the fact that, due to the ontological consistency of
knowledge systems, no renaming is needed.

An example could be a lattice of number systems. A
pre-ontology is the set of numbers (both -- notations and
meanings). Knowledge systems are the systems of natural
numbers, positive integers, integers, positive rational numbers,
rational numbers, positive real numbers and real numbers. It is
quite obvious how these systems constitute a semilattice.

Theorem 9. If a goal g is solvable on a knowledge
system K, and there is a knowledge system K’ such that K<k,
then it is solvable on K.

Proof. First we prove that g is also a goal on X’
Indeed, K’ has all notations of K, and therefore g is defined on
K’ as well. The goal g is solvable on K’, because all derivation
rules of K are available in K’ as well.

Corollary. For every solvable goal there exist minimal
knowledge systems that solve it.

Theorem 10. If a goal g is solvable on a knowledge
system K, then any goal g’<g is solvable on K.

Proof. A goal is solvable, iff all its elements (atomic
goals) are solvable. g’ includes only atomic goals that belong
also to g, and therefore are solvable.

Coroliary. For every knowledge system there are
maximal solvable goals on it. Any solvable goal can be solved
by some maximal solvable goal.

The Theorems 9 and 10 establish a nice
correspondence between the lattice of goals and the lattice of

519

knowledge systems. These theorems demonstrate also the
importance of (pre-)ontologies in the knowledge handling,
because they are applicable only for ontologically consistent
knowledge systems.

The Theorems 9 and 10 can explain the essence of the
well known divide-and-conquer method of problem solving. If
one has an unsolvable problem, i.e. an unsolvable goal, it must
be divided into smaller ones solved in one and the same pre-
ontology, but perhaps, on different knowledge systems. This
may solve the original problem, if the pre-ontology is selected
properly. Let us look at a known example of a ballistic
pendulum. A bullet with known speed and mass hits a wooden
block hanging as a pendulum, and fastens in it. We can
measure an effect of the displacement of the pendulum with
the bullet, using a geometric knowledge system, and find the
change of its potential energy by using some knowledge
system of physics. Using a knowledge system of mechanics,
we can calculate the kinetic energy of the bullet. At the first
glance, we could expect that these energies are equal, but they
are not. We need one more knowledge system (thermal
physics) that explains the loss of energy — we can measure the
amount of created heat, and find that now the balance of
energies is restored.

8 Concluding remarks

We have defined knowledge as a notation with meaning, and
have built on this principally simple definition the set of
concepts for describing knowledge systems, knowledge
handling and using knowledge for reaching goals. First,
knowledge representation has been described by a semantic
system -- an algebraic system with notation-denotation
relation. The semantic systems are closely related to
ontologies. They are pre-ontologies, i.e. ontologies without
inference possibilities. An essential property of semantic
systems is the absence of contradictory meanings of notations.
To guarantee this property, an operation called harmonization
has been introduced. A lattice of semantic systems has been
described. A central concept of the work -- the concept of
knowledge system has been defined in two different ways.
First, following the ideas of S. Maslov, it has been defined as
a free deductive system with interpretation. Second, it has
been defined as a semantic system supplied with derivation
rules. Both definitions give principally the same result.
Ontologically consistent (i.e. harmonized) knowledge systems
can also constitute lattices. These lattices are related to lattices
of goals on the knowledge systems through solvability of
goals.
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