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An Automated Bot 
Detection System through 
Honeypots for Large-Scale

Abstract: One of the purposes of active cyber defense systems is identifying infected machines 
in enterprise networks that are presumably root cause and main agent of various cyber-attacks. 
To achieve this, researchers have suggested many detection systems that rely on host-monitoring 
techniques and require deep packet inspection or which are trained by malware samples by 
applying machine learning and clustering techniques. To our knowledge, most approaches are 
either lack of being deployed easily to real enterprise networks, because of practicability of 
their training system which is supposed to be trained by malware samples or dependent to host-
based or deep packet inspection analysis which requires a big amount of storage capacity for 
an enterprise. Beside this, honeypot systems are mostly used to collect malware samples for 
analysis purposes and identify coming attacks.

Rather than keeping experimental results of bot detection techniques as theory and using 
honeypots for only analysis purposes, in this paper, we present a novel automated bot-infected 
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1. INTRODUCTION

Attackers, astutely, perform their attacks in a well-organized and automated way by leveraging 
infected zombie machines, for which, enterprise network is preferable basin [1], [2]. Since, 
infected machines are key players in Cyber-attacks, cleansing them is one of main goals for 
Active Cyber Defense Systems, thereby, initial step is inevitably, diagnosis. In other words, 
effectuating a practical and scalable system with capability of withstanding expeditiously 
growing and enhancing malwares to identify infected machines in an enterprise network has 
high priority in technologies to be improved within the technical domain of Active Cyber 
Defense. 

There has been extensive work on identifying infected machines, mostly rely on host-based 
analyses that are feeble against today’s malwares with complicated hiding techniques. 
Acknowledging that they retain a signifi cance role in intrusion analysis, resting only on them 
can be imprudent as many intruders run wild inside the network in which host machines are 
armored with at least a couple of host-based security solutions, while those solutions do not 
provide any clue to system administrators. 

In the meantime, numerous researches suggest the use of network related data to detect infected 
machine or benefi t them as auxiliary to host-based systems [3], [4] and [5]. Some detection 
methodologies might require deep-packet inspection that is overcharge for an enterprise and 
not successful in the scenario of encrypted communication preferred as command and control 
channel by malwares.   Availability of raw data and time-scalability of processing DPI data are 
important obstacles to deploy an automated detection system within an enterprise network. To 
surmount these issues, some of detection system methodologies ( [6], [7], [8]) are developed to 
identify infected machines by using NetFlow standard data that is widely stored in an enterprise 
network [9]. 

machine detection system BFH (BotFinder through Honeypots), based on BotFinder, that 
identifi es infected hosts in a real enterprise network by learning approach. Our solution, relies 
on NetFlow data, is capable of detecting bots which are infected by most-recent malwares 
whose samples are caught via 97 different honeypot systems. We train BFH by created models, 
according to malware samples, provided and updated by 97 honeypot systems. BFH system 
automatically sends caught malwares to classifi cation unit to construct family groups. Later, 
samples are automatically given to training unit for modeling and perform detection over 
NetFlow data. Results are double checked by using full packet capture of a month and through 
tools that identify rogue domains. Our results show that BFH is able to detect infected hosts with 
very few false-positive rates and successful on handling most-recent malware families since it 
is fed by 97 Honeypot and it supports large networks with scalability of Hadoop infrastructure, 
as deployed in a large-scale enterprise network in Turkey.

Keywords: Botnet, honeypots, NetFlow analysis, machine learning
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Because of the limited information within NetFlow data, researchers should conduct a wise 
statistical analysis to conclude it with malicious activity detection. For that matter, some 
researchers suggest to include malware families’ statistical NetFlow values by leveraging the 
machine learning techniques and training their systems through beforehand-created models [6], 
[8]. Some of the challenges here are creating a successful model by using malwares that might 
feed detection system featly and feature selection that creates utilitarian models. Moreover, 
they are mostly lack of being deployed in an enterprise network because of modeling unit that 
requires to be trained by most recent malwares and should be kept up-to-date.

Aforementioned limitations of current automated bot-detection technologies and stealthiness 
of recently introduced bots, which are not only send spam or conduct DoS attack but also steal 
sensitive data over encrypted C&C channels [1], [10], inspire us to design a more applicable, 
scalable and self-updated automated individual bot detection system with high detection rate, 
indeed, it was a corollary of a need for such system to an enterprise network in Turkey. 

In this paper, we present BFH (BotFinder through Honeypots) automated bot-infected machine 
detection system, based on BotFinder [8], relying on exclusively NetFlow data and leveraging 
the capability of Honeypots on collecting topical malware samples and utilizing the scalability 
of Hadoop infrastructure and MapReduce programming logic.  In particular, our system consists 
of three important units, which are Cyber Threat Monitoring Unit, modeling and matching units 
which trade on Hadoop system.

Cyber Threat Monitoring System (CTMS) unit is, basically, a comprehensive system, developed 
by our team within the scope of European Unions SysSec project [11]. In BFH system, we 
benefi t its capability of collecting and classifying most recent malwares through 97 honeypots, 
beside this; it is cultivated with the extension of an aptitude for NetFlow generation of malware 
families. In a nutshell, this produces preliminary data in order to feed modeling unit.   

Modeling and matching units of BFH are implemented based upon BotFinder’s methodology 
with an additional feature analysis. Multi-faceted models are acutely crafted after execution of 
samples for each malware family in a controlled environment, handled as component of CTMS, 
through using NetFlow-based features that characterize a malware family communication 
pattern and by identifying similarities in following demeanors; (i) temporal behavior of 
fl ows, (ii) outgoing and incoming data size characteristics, (iii) duration of connections, (iv) 
communication regularity, (v) data accumulation regularity. These features are also calculated, 
during trace extraction part, on NetFlow data of investigated enterprise network and used 
in matching unit and worked out to identify bot-like machine activities. Since an enterprise 
network consists of a numerous number of hosts and large amount of fl ow records that should 
be stored long for better results, our system leverages the Hadoop infrastructure and map-
reduce programming logic[12].

An extensive evaluation of BFH is provided in a large-scale enterprise network in Turkey, BFH 
is deployed. Modeling unit of BFH is automatically trained by caught and classifi ed malwares 
which are still active, at least in Turkish Networks, as they are caught through 97 Honeypots, 
that are live more than four months. Based on models, BFH runs over subjected enterprise 
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network whose pcap data is logged for affi rmation purposes for a month. Our evaluation 
demonstrates that BFH is able to detect malicious activity in the network traffi c of bot-infected 
machines with high accuracy in a reasonable scale for an enterprise. In substance, contributions 
of this paper are as follows:

• We introduce BFH (BotFinder through Honeypots); a vigilant automated bot-
detection system, which leverages capability of Honeypots on collecting recent 
malwares and scalability of Hadoop infrastructure to increase applicability to an 
enterprise.

• We present BFH (BotFinder through Honeypots) that strengthen BotFinder’s model 
generating approach with extra feature analysis, examining similarities of stolen data 
size over time in C&C communication of a bot family. 

• We consolidate that C&C communication traffi c of bot families has some similarities, 
even in most recent bot families in the wild as they are caught lively and exploit these 
similarities on detecting bot-infected machine by only analyzing NetFlow data that 
provides successful detection even on encrypted or obfuscated traffi c. 

2. RELATED WORK

Botnet detection studies over network data include multiple approaches. However, to our 
knowledge, honeypots are not actively involved in the individual bot detection systems though 
yet they have been benefi ted. BotMiner [13], BotGrep [14] and BotTrack [7] typify the approach 
on correlating NetFlow data and detect P2P bots through their C&C topology.  They propose 
to identify the hosts that build up P2P networks by clustering them and discriminate rogue 
and benign groups benefi ting the information on infected machines, gathered from several 
sources such as IDS and honeypots. On that sense, they are instances of bot detection systems, 
utilizing the use of Honeypots. However, they are restricted with IDS signatures, which may be 
insuffi cient as attackers evolve bots shrewdly to be more disguised.

Aforementioned studies do not only capitalize on NetFlow analysis. Indeed, there exist only 
a few papers, specifi cally focusing on it. For instance, Livadas et al. [15] focuses on IRC-
based botnets through classifi cation methodology based on machine-learning. Francois et al. 
[7] leverages PageRank algorithm on NetFlow-based approach to detect P2P botnets [16]. They 
both focus on particular type of traffi c.

On the other hand, BotFinder detects malware infections by exploiting traffi c patterns 
characteristics of them, yet it should be extended to detect malwares, performing non-periodic 
communication patterns. While not conclusive, BFH proposes a way of smoothing this out 
by additional feature analysis. BFH provides practicality in an enterprise network by keeping 
training module updated via Honeypots. It is also a signifi cant illustration of applicability 
of BotFinder that BFH is a live system with some improvements, deployed to an enterprise 
network. Furthermore, BFH upgrades infrastructure for scalability concern to Hadoop and 
processes data.
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Lastly, Disclosure suggests a distinct approach to detect botnet over large-scale NetFlow 
analysis [6]. Disclosure exhibits similar approach to BotFinder on which BFH is based upon, 
yet, it detects C&C servers. Giroire et al. [17] has similar approach to BotFinder, albeit, it 
differs in malware detection methodology.

3. SYSTEM OVERVIEW

BFH operates in two phases as training and investigation. Detection models based on statistical 
features are generated for each malware families in training phase. Investigation phase includes 
extracting same statistical feature extraction for test data and matching unit which compares 
test data with each of the malware family models to detect whether incoming data belongs to 
an infected machine or not.

Figure 1 shows an overview of the system architecture. In the training phase, after collecting 
malwares honeypots, a classifi cation unit classifi es the malwares in different families. Then, 
NetFlow data is generated after executing samples of each malware families. Afterwards, 
the trace extraction is conducted to the NetFlow data of each malware family and ordered 
connections are listed between internal and external IP addresses on a given destination port. 
After extracting trace data, six statistical features are calculated for each member of families. 
These features are the average time between the start times of two consecutive fl ows in the trace, 
the average duration of a connection, the number of bytes on average transferred to the source 
and to the destination, the Fourier Transformation over the fl ow start times in the trace and the 
ratio of outgoing data difference over time difference between the start times of two subsequent 
fl ows [8]. In the modelling unit, multiple binary classifi cation models for each malware families 
are created by combining all the feature vectors of the members of corresponding family.

Finally, in the matching unit, each of the produced feature vectors for evaluated traces is 
subjected to classifi cation via all detection models that are created in the training phase with 
a particular clustering algorithm in a sequential fashion. If any of the detection models raise 
an alert for an examined trace in the matching unit, it is assumed that the internal IP in this 
particular trace is infected.

4. SYSTEM DETAILS

A. Cyber Threat Monitoring System (CTMS)
The input data we need for our detection models is collected through distributed sensors located 
in wide area as traffi c capture. For collecting this input data we propose an infrastructure 
(CTMS) which comprises to two main parts; distributed sensors and malware detection centre.  
Malware detection centre is composed of sub modules such as virtualization servers which are 
hosted low and high interaction honeypots, network traffi c monitoring systems such as NetFlow 
collection and aggregation unit, IDS and anti-virus scanners. In this step, it is important to 
correctly classify the collected input data through honeypots so that different samples of same 
malware family are analysed together. Thus, an actual classifi cation unit which includes anti-
virus scanners is used in this work.
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B. Honeypots, NetFlow Generation and Classifi cation Unit

1) Honeypots
The main feature of a honeypot is to collect attack records and malware samples by imitating 
networks, network services, operating systems or applications. Honeypots are classifi ed 
depending on their abilities as low and high interaction or their roles as server sided and client 
sided. In our work, we use four types of honeypots as collectors (ColA , ColB) and generators 
(GenA , GenB) which are responsible for catching malwares from internet and generating 
malware communication, respectively. While URLs and attachments of spam mails and web 
crawlers are used as source for GenA , GenB  and ColA honeypots, other malwares are captured 
by ColB honeypot. GenA honeypot is responsible for the execution of spam mail attachments 
whereas ColA honeypot runs detected URLs from spam mails. Detailed explanations about 
these honeypots are as follows;

FIGURE 1: SYSTEM OVERVIEW
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• GenA: Windows XP operating system running on a virtualization environment. Three 
GenA high interaction honeypots are used in our environment.

• GenB: Windows XP and Windows Vista operating systems running on a server with 
2.5 GHz CPU and 2 GB RAM. Three GenB machines are used as sandbox.

• ColA: A client side low interaction honeypot aimed at mimicking the behaviour of a 
web browser in order to detect and emulate malicious contents [18].

• ColB: A server side low interaction honeypot that captures attack payloads and 
malwares [19].

2) NetFlow Generation
GenA executes each malware samples fi ve or more times in CTMS environment. After executing 
and generating trace of fl ow, we restore virtual machines to clean state and then GenA prepares 
itself for new malware execution. Same process is repeated for GenB. Nevertheless, this process 
is more complicated than the cleaning state in GenA because of requirement of operating system 
reinstallation on the server.

Since some malware families are virtual machine (VM) aware that can recognize the virtualized 
environment and alters behaviour accordingly, we alter the  settings by changing original 
manufacturer information of the VM with a pseudo one, removing or changing registry keys 
containing VM keyword, changing MAC address identifi ed as VM Ethernet cards, changing 
disk settings such as serial number, fi rmware number etc. and killing particular service threads 
which indicate VM existence to delude the VM-aware malwares.

3) Classifi cation Unit (Virus.Mu?)
A custom malware classifi cation module called Virus.Mu?, (meaning “Is it virus?” in Turkish) 
similar to VirusTotal which is multi engine online virus scanner [20], is implemented by using 
actual versions of various antivirus products from different vendors on isolated VMs [11]. After 
appending malware samples and suspicious documents gathered by honeypots to a queue, each 
antivirus product scans the queue. If a suspicious fi le in the queue is identifi ed as malicious, it 
is tagged based on common keyword in virus naming scheme of corresponding vendor. Then, 
different naming scheme correlated with the same malware family are used to get exact family 
name. For instance, a Waledac malware sample is tagged as Email-Worm.Win32.Iksmas.gen, 
Mal/WaledPak-A and Trojan:Win32/Waledac.gen!A by Kaspersky, Sophos and Microsoft, 
respectively. In addition to Virus.Mu?, we use Suricata-IDS with the Emerging Threats Pro 
Ruleset (ETPro) which delivers network based malware threat detection rule set [21], [22]. This 
rule set contains newly detected malwares’ signatures, thus, we can validate Virus.Mu? and IDS 
alerts in our development network.

C. Features

1) Trace Extraction
As a preliminary phase for some statistical and computational features we extract traces from 
NetFlow data. Traces, representing consequent fl ows in terms of chronological order are the 
most commonly used concepts in bot detection algorithms. Since we apply trace extraction unit 
both training and investigation data, we have to whitelist common Internet services such as 
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Microsoft, Google, Akamai, update services, fi le-sharing services such as SharePoint, DropBox 
etc. Another fi ltering process is applied by comparing the destination IP with most known C&C 
servers. Flows are eliminated and our trained models are more likely to capture only bot traffi c. 
As a result, the fi ltering process in trace extraction has a mediate impact on malware detection 
results.

2) Feature Extraction
Later, we utilize statistical features such as average time interval, average connection duration, 
average number of source bytes per fl ow, average number of destination bytes per fl ow, 
communication regularity and outgoing data accumulation regularity. Each statistical feature 
is computed on subsequent fl ow pairs. Features are briefl y as follow: ( [8] gives detailed 
explanations for fi rst fi ve ones):

• Average Time Interval: It refl ects the average time interval between two subsequent 
fl ows in the trace. This measure detects the periodic characteristics occurred in C&C 
connections. Most of the malwares intent to use a constant time interval or a random 
interval time within a constant value between two connection periods. 

• Average Duration of Connections: Since a malware runs same process in each 
connection, it is expected that the duration of different connections of a malware 
might be similar and different than human-computer interaction. Therefore, 
computing this statistic helps to distinguish a malware connection from normal ones.

• Average Number of Source and Destination Bytes per Flow: As the same 
motivation with the previous feature, it is expected that a specifi c C&C server will 
send same commands to a target machine. Thus, the average number of bytes has a 
characteristic structure in a C&C trace. Similar consideration will be in charge in 
destinations bytes. A target machine will give a fi xed response to a particular C&C 
server.

• Communication Regularity: We apply Fast Fourier Transform to the binary 
sampled C&C communication to detect communication regularities. While doing 
this we sample our connection start time as 1 and 1/4th of the smallest connection 
interval slops as 0. Afterwards, we compute the Power Spectral Density (PSD) of the 
Fast Fourier Transformation over our sampled trace and extract the most signifi cant 
frequency. This helps us to detect even randomly varied C&C connections within a 
certain range to an extent. 

• Data Accumulation: We apply a new feature in addition to [8] for detecting malwares 
with randomly changed duration within two subsequent fl ows in a trace. This measure 
is calculated as average value of the each ratio of data size difference between two 
subsequent fl ows to difference of start times of them. Since the connection times of 
such fl ows may be extended because of communication problems with C&C, the 
accumulated data amount, which is produced by victim and stolen by an attacker, 
in the following connection in such a case will grow up, especially in malware with 
keylogger payload.  Thus, characterizing the accumulated data amount per second 
between two connections might exhibit similarities
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D. Model Creation and Detection Unit
The basic assumption behind the usage of a machine learning algorithm in detection module 
is that malwares leave proprietary patterns of traffi c or behaviour, which could be tracked over 
traces, within the target machine. Our desired outcome is to raise an alert if the NetFlow data 
gathered from investigated traffi c includes a known pattern belongs well-known and actual 
malwares. Thus, we use a supervised machine learning algorithm based on several statistical 
features, explained in previous section, instead of one of the unsupervised algorithms which do 
not need any training data and are mostly used to cluster similar data within isolated groups. 

A supervised machine learning algorithm in malware activity detection has to address several 
concerns such as generality, robustness on evasion techniques, stealthiness and timely detection 
[23]. Firstly, the generality of the detection module represents the ability of covering a wide 
spectrum of malware types in the training data.  Secondly, the robustness refers to the ability 
of recognizing different and new types of smuggling methods. Thirdly, stealthiness requires 
detecting a malware attack without revealing ourselves to the attacker. Moreover, the detection 
algorithm has to operate in on-line fashion with a reasonable respond time and high detection 
accuracies. Since our system upgrades itself with daily collected data through a number of 
honeypots, classifi cation models cover recent malware types and are getting robust on their 
evasion techniques. In our method, since we analyse the trace data in passive fashion without 
establishing an interaction with attacker, it is not possible to draw information about detection 
process to the attacker. Finally, the investigation data are gathered as NetFlow data and it is a 
trivial operation in terms of time consumption to extract traces and statistical features. Thus, the 
detection system in this work is suitable for on-line operation.

In the last decade several supervised machine learning algorithms such as Support Vector 
Machines (SVM), Artifi cial Neural Networks (ANN), Decision tree classifi ers, Bayesian 
classifi ers and random forest algorithms have been proposed in botnet detection and C&C 
server identifi cation [6], [24]. On the other hand, similar algorithms like these ones could be 
customized for botnet detection with specifi c feature space as applied in [8]. In this case, such 
techniques require a clustering phase for creating classifi cation models in training while they 
need a weighted scoring methodology to identify the cluster of the investigation data. In what 
follows next, we introduce our modelling and matching algorithms based on six statistical 
features. Detailed explanation about our detection algorithm is given in [8].

1) Model Creation
In common supervised machine learning algorithms, the size and attributes of the classes in 
the classifi er model should be introduced before triggering the training process. For instance, 
labels represent the malware families should be included the detection model by associating 
them with the feature vectors created via the traces belong that malware family in the fi rst place 
before training the model in SVM algorithm, and like so many others. However, this limits 
to introduce the actual and new malware families to the classifi er model while dynamically 
updating that with daily incoming data from honeypots in our situation. Therefore, we use 
an un-supervised machine learning approach, CLUES (CLUstEring based on local Shrinking) 
algorithm [25], to create detection models for each malware families. We fi rst calculate our six 
statistical features separately for each trace of the training data. Then, the trace-features are 
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clustered by using CLUES algorithm which allows dynamic sized clustering without selecting 
number of clusters. A cluster which includes large number of trace-features for a particular 
malware family, identifi ed through malware classifi cation unit, represents the one of the 
expected values for this feature for this particular malware family. A weight is associated with 
each cluster in the degree of representing that malware family. Eventually, six sets of weighted 
clusters are created for each malware families. The average value of all of each cluster weights 
for a family is assigned as cluster quality.

2) Detection
Each features of a trace belongs to investigation data is compared individually with each of the 
clusters of each of the detection models which represent malware families. For instance, the 
fi rst feature of a trace (T) is in the scope of values belong to one of the clusters in a model (M), 
then, it counts a hit. Then, the weight associated with this cluster is added to that feature’s total 
hit score. If another cluster for this feature in model-M raises a hit, its weight is added in the 
same way. Then, if this feature’s total hit score exceeds the same feature’s total hit threshold, it 
counts that this feature belongs to model-M. Same calculations are conducted for other features 
of trace-T. Eventually, if majority of the features of trace-T belongs to model-M, an alert raises 
about detection of infected machine by the malware family which has the classifi cation model 
as model-M.

E. Distributed Processing
Hadoop Distributed File System (HDFS), is a purposefully developed system for handling large 
fi les through write-once and read many data-access patterns. It has two components; name node, 
which is responsible for metadata of fi le system and management and data node that is for block 
storage and retrieval of data. Hadoop provides MapReduce software framework. MapReduce 
programming model utilizes input and output (key, value) pairs to manage processing data on 
different nodes.

BFH processes exclusive traces and does not require correlating any of two, thus, calculating 
statistical feature is easy to be implemented in distributed way. Since, its modeling and matching 
unit focuses on traces between IPinternal and IPexternal entities, MapReduce programming logic 
is a perfect match for our system as they can be used for key values.

MapReduce methodology provides grouping and partitioning utilities to manage to group fl ows 
based on multiple entities at the same time. BFH manipulates it to store the fl ows that have 
same (IPinternal , IPexternal) entities, meaning once fl ow start times are sorted, it extracts traces 
automatically. Main overhead for Hadoop is moving data over network, reading and writing 
to disk, yet, this type of data storing, maximizes the possibility of keeping traces in one data 
node, minimize the possibility of moving data over network. Performance evaluation of our 
system is a complete work for another paper; thus, it is not discussed in this paper. However, 
[26] provides ground truth on how Hadoop can outperform for enough large scale networks.  
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5. EXPERIMENTATION

BFH is deployed in a part of large-scale enterprise network in Turkey which has about 15000 
hosts as an extension of CTMS, actively running in a production environment. NetFlow data 
over this network is directly extracted from Cisco devices and stored on Hadoop clusters after 
dumping them to text fi le. 

For evaluation purposes, we evaluate BFH on a part of system, a network with ~8200 hosts and 
in daily measurement ~6300 concurrently active, which are more vulnerable to be infected as 
they provide services over internet (Table I) for three months. This network will be referred as 
“experiment network”. 

TABLE I: EXPERIMENT NETWORK INFORMATION

A. Training Dataset
As SysSec Report [11] details the information on malwares caught by CTMS, our system  is 
able to perform on a large amount of malware samples, however, to provide better estimation on 
performance, as Table II shows, six different malware families are discussed over time period 
of 15 days. Classifi ed Malwares, caught via 97 honeypots are used to train our system. On each 
15 days, traces and models are updated via accumulated malwares till that date. Table II shows 
sample and trace details of families over time.

1) Malwares
Carberp - Sophisticated, modular and persistent malware utilizing advanced obfuscation 
techniques to evade detection, removal and the ability to disable antivirus. 
Hesperbot - A Trojan horse that opens a back door on the compromised computer and may 
steal information.
Tinba - Tiny Banking Trojan that steals information from the compromised computer.
Ramnit - A multi-component malware family which infects Windows executables as well as 
HTML fi les.
Gamarue - A malware that can download fi les and steal information about compromised 
computer.
Cridex - A malware that may be delivered via spammed malware. It captures online banking 
credentials entered via web browsers, downloads and executes fi les, and searches and uploads 
local fi les.

Total Number of Flows

NetFlow Size (GB)

Internal Host Count

Concurrently Active

Start Date

End Date

Length (Days)

322920000

41.4

~8200

~6300

01-07-2013

30-09-2013

92
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Aforemntioned malwares are most observed malwares within Turkish Network, thus, they have 
been selected in experiments. 

B. Experiment
Experiment is conducted on experiment network after whitelisting for some external services 
that might exhibit regular behavior and increase FP rate, such as; Microsoft, Google, Akamai, 
update services, fi le-sharing services; SharePoint, DropBox etc. A BFH generated alert is 
analyzed by using full traffi c capture, if symptoms are explicitly matched than it is signed as true 
alert. Meanwhile both network-based and host-based IDS/IPS alerts are also used for double-
check. If there is no explicit symptom from neither full packet capture nor IDS/IPS solutions 
then blacklisting services are used to determine [27-31]. In case, none of these controls provide 
any infection implication, it is signed as False Positive, while this might not be completely true.   

TABLE II: MALWARE FAMILY INFORMATION CAUGHT BY HONEYPOTS

1) Test Dataset
Bot Detection systems, mostly focus on off-line dataset analysis and one dataset of a large-
scale enterprise network. However, in real scenarios, actively running bot detection systems are 
most likely to be analyzing weekly or monthly changing dataset. In our active system, created 
models via accumulated malwares are used to detect bots on NetFlow traffi c that belongs to last 
four months. Since our NetFlow data changes over time, we focus on diverse dataset, which 
is NetFlow of each month. Consequently, our test dataset consists of three different NetFlow, 
stored in months: July 2013, August 2013, and September 2013.    

Besides, complete traffi c captures of this particular network are stored for 30 days to verify 
generated alerts, but, for storage limitations, it is deleted monthly. Therefore, in our experimental 
setup, detection rates and infected host are analyzed by using accumulated malware samples 
and traces after each 15 days to provide better understanding for contribution of Honeypots. 
More precisely, accumulated traces are used to train the system then created models are applied 
on subjected month’s NetFlow data.  

Start Date - 
End Date
 

Carberp

Hesperbot

Tinba

Ramnit

Gamarue

Cridex

01 Jul - 
15 Jul

3 / 8

4 / 4

20 / 24

11 / 21

25 / 24

12 / 20

01 Jul - 
31 Jul

4 / 9

6 / 6

32 / 30

14 / 25

28 / 29

16 / 25

01 Jul - 
15 Aug

18 / 18

9 / 10

34 / 38

18 / 29

31 / 35

21 / 33

01 Jul - 
31 Aug

32 / 24

11 / 13

38 / 45

25 / 36

34 / 39

25 / 39

01 Jul - 
15 Sep

42 / 31

14 / 21

46 / 52

33 / 46

38 / 43

32 / 46

01 Jul - 
30 Sep

52 / 35

19 / 27

49 / 62

37 / 55

43 / 51

36 / 50

Number of Samples / Traces

M
al

w
ar

e 
Fa

m
ily
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6. DISCUSSION

Figure 2 summarizes training dataset characterization for each family over time. This graphic 
illustrates, when number of samples increases, cluster quality for each family rises. This graphic 
implies that BFH, wisely, manipulates honeypots to increase cluster quality.  

FIGURE 2: CLUSTER QUALITY OVER TIME

Interestingly, cluster quality of Carberp malware family is less than other malware families; 
main reason for this is that Carberp produces different number of traces from one sample. For 
example, in the fi rst half of July, three samples are captured and eight traces are generated out 
of them. Beyond that, two factors can be considered as cause for this, one is that classifi cation 
unit identifi es some of the malwares as Carberp, yet, it belongs to a different family. Second, 
Carberp might have different variants, exhibiting diverse network characteristics.

Figure 3 is the BFH detection results. In this graphic, detection rate of each experiment on same 
dataset is highlighted with same color. First and foremost, Figure 3 reveals that BFH is able to 
detect bot-infected machines in worst case 68%, in which NetFlow data is limited to two weeks 
and number of samples of this particular family is less than a half of number of samples in 
September. Although, there is not false negative evaluation opportunity, for a detection system, 
having a few false-positives among a signifi cant number of alerts (Figure 4) is an important 
indication of success, where BotFinder has detection rate from 49% to 87%, except Banbra 
family.
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FIGURE 3: DETECTION RATE (EACH COLOR INDICATES RESULT 
OF EXPERIMENT ON SUBJECTED MONTH’S NETFLOW)

Secondly, detection rate for same dataset (tone-in-tone dyed) indicates, the more traces used 
in training, the more accurate detection, except Hesperbot in August. This family generates 
only 8 alerts with 1 FP on fi rst half of August whereas it generates 10 alerts with 2 FPs. In real, 
it detects more bot-infected machines.  Consequently, it highlights the vigilance of BFH on 
integrating Honeypots to bot-detection system.  

Furthermore, when we compare detection rates for different datasets, in Figure 3, dashed 
columns of each family should be considered so as to infer that detection rates increase in 
monthly by improvement of samples and traces with a few exceptions, discussed on later 
section. Indeed, detection rate is expected to increase between second half of a month and 
fi rst half of a month because system is trained with higher number of traces, yet datasets are 
different but hosts within the network same. However, Ramnit and Gamarue families have 
statistics that contradict to it. For instance; BFH has higher detection rate on end of August 
than beginning of September. Since experiment network involves around 8000 hosts with 
approximately 6300 concurrently active hosts, and active hosts are most likely to be different 
within different months while matching unit runs.

FIGURE 4: INFECTION ALERTS ON EACH DATASET OVER TIME



269

7. CONCLUSION

This paper presented BFH, a live BotFinder-based automated bot-infected system through 
Honeypots. BFH does not require any host-based information, deep-packet inspection or any 
support from other network-based security deployments such as IDS/IPS. Instead, it relies 
on NetFlow data, uses behavioral and training-based approach so as to detect encrypted 
communications and avoid storage overhead, thus, it provides solution for large-scale. BFH 
is vigilant system, since training module of BFH is fed by samples caught via sophisticated 
honeypot system. BFH is deployed to a large-scale enterprise network in Turkey on Hadoop 
that provides scalability. Our experiment on subjected network shows that BFH is able to 
detect centralized bot-infected machines with high-accuracy; indeed, similar approach can be 
improved to detect P2P bots as future work.  
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