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Neural Network-Based 
Technique for Android 
Smartphone Applications 
Classification

Abstract: With the booming development of smartphone capabilities, these devices 
are increasingly frequent victims of targeted attacks in the ‘silent battle’ of cyberspace. 
Protecting Android smartphones against the increasing number of malware applications 
has become as crucial as it is complex. To be effective in identifying and defeating 
malware applications, cyber analysts require novel distributed detection and reaction 
methodologies based on information security techniques that can automatically 
analyse new applications and share analysis results between smartphone users. Our 
goal is to provide a real-time solution that can extract application features and find 
related correlations within an aggregated knowledge base in a fast and scalable way, 
and to automate the classification of Android smartphone applications. Our effective 
and fast application analysis method is based on artificial intelligence and can support 
smartphone users in malware detection and allow them to quickly adopt suitable 
countermeasures following malware detection. In this paper, we evaluate a deep 
neural network supported by word-embedding technology as a system for malware 
application classification and assess its accuracy and performance. This approach 
should reduce the number of infected smartphones and increase smartphone security. 
We demonstrate how the presented techniques can be applied to support smartphone 
application classification tasks performed by smartphone users.
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1. Introduction

The Android operating system for tablets, phones and smart devices is by far the most 
widespread mobile operating system in the world, with millions of active devices. 
Millions of new malware programs have been released for this platform in recent 
years. The market share of exploits that target the Android platform makes it the 
second most targeted platform for running exploit attacks.  The goal of this paper is to 
train a neural network to evaluate the discoverability and explainability of upcoming 
attack patterns. Classification capabilities of neural networks are heavily reliant on 
the quality of the underlying datasets, and subsequently even more dependent on 
the granularity of extracted features. The presented technique (see Figure 1) will 
apply deep neural networks and supervised learning to evaluate the capabilities of 
detecting smartphone malware applications in Android. Currently there is a lack 
of technology supporting an integrated solution of large-scale feature extraction 
and neural network training. The goal of this approach is to release an open source 
framework that provides integrated functionality along the required workflow. This 
workflow comprises application source code extraction, feature composition, neural 
network training and analysis of results. The components of this system are executed 
at scale within Hadoop and GPU clusters. The platform supports publishing of the 
harvested ground-truth dataset, the extracted features and the trained neural network 
on an open data platform. To visualize the projects results and to raise awareness for 
malware applications prevention in the general public, a demonstrator was developed 
that allows live inspection of the trustworthiness of Android applications. 

FIGURE 1. THE OVERVIEW OF ESTABLISHING THE CYBER SITUATIONAL AWARENESS USING 
NEURAL NETWORK FOR APK CLASSIFICATION.

The neural network approach is widely used for different analytical tasks. A machine 
learning framework based on word-embedding techniques can be used for the 
classification of text files. Standard machine learning algorithms are incapable of 
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processing strings or plain text in their raw form; rather, they require numbers as 
inputs to perform any type of calculations. In the word-embedding approach, words 
are mapped to numerical vectors. The difference from other language processing 
methods is that the embedding vector also keeps the context of the word in a sentence 
or file. This improves the overall accuracy of the prediction model, compared to 
simple counting of words in a file. Our approach provides a numerical representation 
of contextual similarities between Android Package (APK) features extracted in text 
format. Each feature is represented by a real-value vector with tens or hundreds of 
dimensions. In contrast, other methods, such as a one-hot encoding, employ thousands 
or millions of dimensions required for sparse word representations.

This paper is structured as follows. Section 2 gives an overview of related work and 
concepts. Section 3 explains the APK classification workflow including the feature 
extraction method and neural network training for APK classification. The expert 
system issues and related rule engine are covered in Section 4. Section 5 presents 
the experimental setup, applied methods end evaluation. Section 6 presents our 
conclusions.

2. Related Work

The design of the presented framework is inspired by the DREBIN project (Rieck, 
2004; Hoffmann, 2013), which combines a broad static analysis of gathered 
smartphone application features and applies machine learning for identifying patterns 
that are indicative of malware. The manifest and decompiled dex (Dalvik Executable) 
codes are scraped to extract feature sets and DREBIN utilizes a linear SVM algorithm 
(Shawe-Taylor, 2000), which assumes real-value inputs. The manifest file provides 
features such as requested hardware components and system granted permissions, 
declared components such as services or broadcast receivers and filtered intents which 
are used for inter-process communication. By analysing the disassembled bytecode, 
additional “hidden” features are gathered, such as restricted API calls, actually used 
permissions, calls to sensitive resources (e.g. frequently used for obfuscation) and 
a list of all network addresses. This demonstrated approach provides both effective 
detection rates and explainable results and was able to outperform related approaches 
as well as 9 out of 10 popular anti-virus scanners with a detection rate of 94% and a 
false positive rate of 1%, and reliably detect all malware families except Gappusin. 
DREBIN showed the importance of the different features sets and that their proper 
composition can lead to reliable and explainable detection results using neural 
networks and machine learning. While the methodology is well-documented, and the 
collected corpus of 120 thousand apps (including 22% malware samples) is published 
for academic re-use, the corpus itself is outdated (SDK level 12) and the DREBIN 
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framework and neural network itself are closed-source. Furthermore, DREBIN is 
highly restricted in its learning-based detection capabilities as the project targeted 
the smartphone as runtime and detection environment where such a dataset must be 
heavily maintained and updated. The SVM approach is limited by the choice of the 
kernel, which is a general weak point of SVM applications. Alternative algorithms 
employing categorical features and labels are Naive Bayes (Schütze, 2008), Logistic 
Regression (Cox, 1958) and Random Forests (Ho, 1995). Approaches based on 
decision trees such as Random Forests are very fast to train, but quite slow to create 
predictions once trained. A higher degree of accuracy requires additional trees, which 
means losing performance. Naive Bayes often serves as a robust method for data 
classification, but the vectors representing incident in Naive Bayes are larger than 
in word-embedding methods and also Naive Bayes classifiers make a very strong 
assumption on the shape of the data distribution. Further problems may result due 
to data scarcity, which can result in probabilities going towards 0 or 1, leading to 
numerical instabilities and worse detection results. Logistic regression like a Naive 
Bayes method requires that each feature in an incident is independent from all other 
features. Logistic regression models are also vulnerable to overconfidence as a result 
of sampling bias.

A brief overview of related approaches for the detection of Android malware lists 
some comparable methods for this task. Kirin (McDaniel, 2009) checks application 
permissions, Stowaway (Wagner, 2011) analyses API calls to detect overprivileged 
applications and RiskRanker (Jiang, 2012) identifies applications with different 
security risks. However, none of these approaches includes multiple features sets or 
features received from reverse-engineering the applications’ source code, elements 
that were proven crucial for the detection results in DEBRIN. Open source tools 
such as Smali2 and Androguard3 enable dissecting the application’s content for 
subsequent feature extraction and are evaluated for their use within framework’s 
extraction pipeline. The dedicated analysis system DroidScope (Droidscope, 2012), 
which enables introspection at different layers of the Android platform, allows users 
to dynamically monitor applications in a protected environment at runtime. Methods 
of sandboxing try to mimic a real-world environment and aim to discover malicious 
behaviour but are limited due to sophisticated obfuscation methods used in modern 
malware. ParanoidAndroid (Bos, 2010) creates a virtual clone of the smartphone 
that runs in parallel on a dedicated server and synchronizes with the activities of the 
device. This configuration allows for monitoring the behaviour of applications on the 
clone without disrupting the functionality of the real device, but the resources required 
for a large number of devices are often not technically feasible. Dynamic analysis 
tools, such as DroidRanger (Jiang Y. Z., 2012) are suitable for filtering malicious 
applications from Android markets.
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Dedicated open source frameworks in the domain of malware detection are rare. 
A prominent but outdated system is MobileSandbox (Hoffmann, 2013), which is 
designed to automatically analyse Android applications by combining a static and 
dynamic approach, which for example allowed the analyst to log system calls to 
native APIs. MobileSandbox provides a highly complex and immature system due 
to the enormous integration effort and customizations required for the Davlik virtual 
machine and emulators.

The advantage of the embedding method is that it not only takes into account features 
such as count and word context, but also learns automatically from examples. The 
autoencoder (Cheng-hua, 2008) makes use of neural networks, which are already in 
use by latent semantic analysis for text categorization to reduce dimensionality and to 
improve performance; but this method has the disadvantage of not using the context 
of the feature. Another application (Lee, 1999) employs an artificial neural network to 
improve text classifier scalability. 

Classification methods implemented in these threat intelligence tools suffer from large 
vector sizes and are less effective as the number of features rises. The main drawback 
of existing text classification methods such as SVM or the Gensim tool is that they 
require a huge database for training to provide meaningful results. Another common 
disadvantage of these techniques is the lack of result transparency due to employing 
vectors containing real-valued numbers. These tools provide results, but it is difficult 
to explain how the results were calculated. In particular, the SVM approach is limited 
by the choice of the kernel. Another disadvantage is the inability to handle words that 
were not previously included in the training vocabulary. 

Multiple researchers are developing an automated technology that will support an 
information classification system. An attempt to classify the relationships between 
documents and concepts employs principles of ontology. Currently, APKs can be 
classified based on the features included in the package and in source code. Contrary 
to this approach, we classify not only by data extracted from APK that can differ 
from dataset to dataset, but we also employ additional rules implemented in an expert 
system and take in account APK source, type, timestamp, dataset and other parameters. 
This technique provides more accurate prediction.

Neural networks with word-embeddings in general also require large training datasets, 
but for APK classification, taking into account the fact that we have multiple different 
datasets, we will train multiple models for each dataset and additionally employ a rule 
engine to produce accurate results compared to the case if we would just train one huge 
model ignoring intrinsic differences in the datasets. Consequently, for the particular 
use case of APK classification task, we suggest using the word-embedding neural 
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network solution that scales well because of the split-models concept and supportive 
rule engine, while maintaining a high level of accuracy. Our goal is to make a more 
accurate prediction for a specific dataset, employing the whole aggregated expert 
knowledge and applying expert rules.

3. Application Classification Method

APK classification employs application features extraction and training of neural 
network to produce a model for the queries. Deep Learning is employed for learning 
in neural networks and describes a subset of machine learning algorithms that deal 
with accurately assigning weights across many neural network layers. Three main 
types of machine learning can be distinguished: Supervised, Unsupervised and 
Reinforcement Learning. Supervised learning can solve classification problems. 
Classification predicts previously defined categories for a given sample. In the case 
of Android malware these categories are binary: “benign” or “malware”. Supervised 
learning employs labelled training data to learn mapping functions from a given 
input (embedding vector in our case) to a desired output value. A supervised learning 
algorithm analyses the data through weights and activation functions that activate 
neurons and produces an inferred function, which is then used for mapping new 
samples or correctly determining classification labels for unseen instances. 

A. Application Classification Using Neural Networks
Figure 1 provides an overview of establishing the cyber situational awareness using 
neural networks for APK classification. This approach is based on a knowledge 
base containing large number of labelled smartphone applications. This data can be 
provided by different vendors, collected at different times for particular operating 
systems, and may be separated by type of application. Therefore, for each use case 
(Situational Awareness System – SAS) we propose to have a separate expert system 
and associated decision rules. All such SAS systems are then aggregated in a common 
expert system, which performs final classification. A user uploads their APK package 
to the SAS. The system extracts features from this package, stores them for further 
analysis and queries an APK model that was trained based on knowledge base. The 
final classification result in the form of a report and signatures is disseminated by 
means of a signatures feed for subscribed clients C1-Cn. 
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FIGURE 2. THE WORKFLOW FOR FEATURE EXTRACTION AND CLASSIFICATION OF APK USING A 
NEURAL NETWORK APPROACH.

To employ the embedding method, features aggregated in text form must be 
converted into numerical values, since machine learning algorithms and deep learning 
architectures cannot process plain text. Therefore, each uploaded APK (see Figure 2) 
is converted into an array of strings, where each string represents a particular feature. 
Then strings are encoded by indices, and each feature string has a unique index. If 
this feature repeats in the APKs, we re-use its index. Finally, arrays of indexes are 
converted in one-hot encoded vectors, meaning that the position of each feature in 
the original feature set is encoded using “1” if a feature exists in the given place 
or “0” if not. After defining the number of latent factors expressed in the length of 
the embedding vector, we convert produced on-hot vectors into embedding vectors, 
giving an array of float numbers. Therefore, we create a list of embedding sequences 
for each APK with embedding vector representation of each feature. Embedding 
vectors are an input to the neural network.

The neural network is composed of an input embedding layer, a flattening layer and 
two hidden layers, where the model will be trained to classify APKs as either “benign” 
or “malware.” The flattening layer is required to enable a connection between the 
dense and embedding layers. We flatten the two-dimensional output matrix of the 
embedding layer (with one embedding for each feature in the input sequence of 
features) to a one-dimensional vector used by the dense layer.  
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B. Application Features Extraction
The workflow process is composed of two parts. One process is a neural network 
model training, where workflow acquires APK data from different sources such as 
community feeds, threat intelligence tools and domain experts, which are vendors 
or anti-malware producers. The model is trained and regularly updated by extended 
knowledge from new APK collections. The query workflow execution begins with 
reading a smartphone application package (see step 1 in Figure 2) provided by 
a user and parsing the extracted content for features extraction in step 2. For the 
acquisition computation we employ a parsing method developed by researchers who 
reimplemented the DREBIN parsing method described in the DREBIN paper (Rieck, 
2004). By means of extracted features, we obtain an APK vector. If the given APK is 
not in the model, we additionally extend the model knowledge base for subsequent 
training. In the next step we train the APK model using a neural network (step 3) or a 
query trained model in step 4, applying the created feature vector. The model responds 
with a tentative classification. Finally, we calculate the APK classification employing 
an expert system and the decision rules in step 5. These rules comprise decision 
logic and expert profile settings that are specific for an organisation. Factors such as 
APK type, operating system, vendor, creation time and origin have an impact on the 
resulting decision. At the end we provide a report accompanied by an APK signature.

4. Expert System

Table 1 lists the layers that are employed in the neural network, including their type, 
activation function, size and parameter number.

TABLE 1: DEPENDENCY CHART WITH INTERACTIONS AMONG 
THE RULES AND ASSOCIATED IMPACT FACTORS.

Install

+

+

+

+

+

+

+

+

+

+

Remove

+

+

+

+

+

+

+

+

+

+

Ignore

+

+

+

+

+

+

+

+

+

+

Alarm

+

+

+

+

+

Log

+

+

+

+

+

+

+

+

Clean

+

+

Quarantine

+

+

+

+

+
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To organize the knowledge base (see Figure 1), we must structure the information 
that has been obtained from the domain experts of APK domain and from conducted 
experiments. 

We aim to achieve the following objectives:

1)	 Define typical scenarios for smartphone application handling;
2)	 Identify the parameters used by cyber experts for APK handling;
3)	 Define the linguistic labels that are used by the experts to classify measured 

values of each parameter and identify the range of each label when possible; 
and

4)	 Define typical scenarios for determining the conditional rules that relate 
these linguistic labels to specific control actions.

Knowledge acquisition for the knowledge base occurs through the domain expert. 
In our case, these are cyber analysts and SOC operators who provide the knowledge 
with typical application use cases, metrics and parameters that characterize the APK 
analysis processes. Information retrieved from the APK packages is processed by the 
customized domain model. This model enables structured and maintainable handling 
of analysed data and its storage in a database for further treatment. Inferred data is 
processed in an inference engine by rules application in order to provide the rationale 
for a particular analysis action. A user communicates with the expert system using 
GUI by sending a request query and receiving an advice in response.

The development of a knowledge base is an iterative process. Knowledge can be 
encoded, tested, added, updated and removed. Potential problems with rule definition 
and coverage are redundant rules, conflicting rules, rules that are subsumed by other 
rules, unreachable rules, inconsistent rules and circular rules chains. In order to avoid 
the rule-based systems faults described by Arman (2007), we generated a dependency 
chart that shows the interactions among the rules (Nguyen, 1985). The dependency 
chart presented in Table 1 gives an overview of the identified rules and associated 
impact on the knowledge base. The dependency chart helps to find potential rules 
problems and to keep an overview of the rules.

Among the most important rules (see Figure 3) are those regarding APK issues, 
like “neural network model classification”, “metadata”, “file size”, “file name” 
and “malware signature”. According to the requirements and circumstances for a 
particular APK, an expert could leverage these rules; for example, if a file name has 
a semantic meaning or if file size is of interest for analysis. Sometimes metadata 
contains important and useful information. The “malware signature” rule becomes 
significant in the case of known malware signature in an application source code. The 
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issue of “type” means that APK has significant risk if it belongs to particular type 
of application e.g. gambling. The issues “vendor” and “source” could have higher 
severity if the actors are known for producing malicious APKs.

FIGURE 3. AN EXAMPLE SELECTION OF FORWARD RULE CHAINING FOR SMARTPHONE 
APPLICATIONS CLASSIFICATION.

Rules are associated with related actions. Table 1 gives an overview of these relations. 
Upon the provided inputs, the rule engine can trigger actions, such as “install”, 
“remove”, “ignore”, “alarm”, “quarantine”, “clean” or “log” the given APK. The 
“clean” action is the most challenging and supposes an attempt to remove malware 
from the APK, which is applicable only by a high value of APK. Other actions are 
self-descriptive.

The previously defined rules should be organized in order to process input statements 
(assertions) and to infer appropriate action and conclusions. A process of the forward 
rule chaining for APK collection is presented in Figure 3. It is a process of moving 
from the “if” patterns (antecedents) to the “then” patterns (consequents) in a rule-based 
reaction system. We consider the antecedent as satisfied when “if” pattern matches the 
assertion. Assertions are depicted in the figure as the black rectangles on the input side 
and as the white rectangles on the output side. The rules are presented in the form of 
blue semi-circles (R1-Rn). The rule is triggered if all the antecedents are satisfied. 
A triggered rule is considered as fired if it produces a new assertion or performs an 
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action as output (white rectangle in the figure). Since our expert system is presently 
focused on APK collections, we do not need a conflict-resolution procedure to resolve 
possible rules conflicts. Managing dependencies, as depicted in Table 1, reduces the 
risk of conflicting rules and lists rules required to distinguish malware from other 
applications. A variable x acquires value as antecedent pattern is matched to assertion. 
For example, using information from well-established and reliable “FDroid tool”, rule 
R3 determines that an application stems from known malicious source:

R3:	 If ?x is provided by known malicious source 
	 Then ?x is not trusted

The rule-based system starts APK classification with the rule R1. Suppose that 
particular APK was classified by the neural network model as malware. Then if the 
antecedent pattern “?x is a malware” matches that assertion, the value x becomes “is 
a malware candidate” and rule R1 fires. Because application is an Android APK, rule 
R2 fires, establishing that the document “has matching OS”. Rule R3 fires with the 
value “is not trusted”. If two input assertions match an antecedent pattern, rule R4 
fires. The output assertions of the first three rules become the input assertion for the 
rule R5 and if there is a match to the antecedent pattern the rule fires with the value 
“is a malware”. Finally, if the input assertions of rule R6 match, the rule fires with 
resulting action “is an older malware game application to remove”.

The output of the rule-based system is a conclusion for a malware classification. The 
classification of the given APK is calculated based on the features of the associated 
APK. The inference engine performs conditional rules and classification analysis, 
infers appropriate action and formulates advice using relation of linguistic labels to 
specific control actions.

5. Experimental Evaluation

A. Evaluation Data Set
The experimental dataset with ground-truth labels was provided by firms I and C 
and processed on an ABC server, which comprises Hadoop and GPU clusters. We 
split samples into test (5,640), validation (5,076) and training sets (45,676). For 
feature extraction we employ APK feature extractor described on a research site1 and 
reimplemented on GitHub.2 

B. Experimental Results and Interpretation
Classification of APK samples into benign and malware was evaluated employing 
techniques described in the previous sections. Features were extracted from APK 

1	 https://www.sec.cs.tu-bs.de/~danarp/drebin/
2	 https://github.com/MLDroid/drebin
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packages and converted in embedding vectors. Here is an example selection of loaded 
features: 

•	 UsedPermissionsList\_android.permission.VIBRATE 
•	 UsedPermissionsList\_android.permission.ACCESS\_NETWORK\_

STATE
•	 UsedPermissionsList\_android.permission.INTERNET
•	 BroadcastReceiverList\_com.google.android.apps.
	 analytics.AnalyticsReceiver 
•	 SuspiciousApiList\_Landroid/content/Context.getSystemService
•	 SuspiciousApiList\_Landroid/app/Activity.getSystemService

Embedding vectors describing loaded features were used as an input to a neural 
network. Table 2 lists the layers employed in the neural network including their type, 
activation function, size and parameter number. The total number of parameters used 
in the input and hidden layers during the training was 19,546,001. We employed an 
embedding approach for the input layer and sigmoid activation function for the dense 
layer. The total training time was 29,578 seconds. The model parameter settings for 
this particular training is presented in the fifth row in Table 3.

TABLE 2: SUMMARY OF THE NEURAL NETWORK TRAINING PROCESS.

Figure 4 visualizes the training results. We can see that, in general, the model training 
accuracy improves with every iteration (epoch) from 0.845 at the beginning to 0.982 at 
the end, which is sufficiently good; whereas training loss (error) of original information 
decreases from 0.362 to 0.056. This means that the outputs will be degraded compared 
to the original inputs, but it is an acceptable rate. Similarly, validation accuracy is in 
the range between 0.931 and 0.966. Validation loss decreases from 0.191 to 0.096.

Layer

Input layer

Hidden layer 1

Hidden layer 2

Hidden layer 3

Type

Embedding

Flatten

Dense

Dense

Size

200x30

6,000

50

1

Parameters #

19,245,900

0

300,050

51

Activation Function

Sigmoid

Sigmoid
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FIGURE 4. ACCURACY AND LOSS CHARACTERISTICS BY NEURAL NETWORK TRAINING.

C. Evaluation Effectiveness
Table 3 shows the impact of parameter tuning on the neural network output and 
accuracy.

TABLE 3: IMPACT OF PARAMETER CHANGING ON NEURAL NETWORK OUTPUT AND ACCURACY.

Multiple factors can impact characteristics of the neural network model; some of them 
are depicted in Table 3. These factors are optimization algorithm, maximal length of 
the embedding vector, dense units number, activation functions, number of training 

LR

0.001

0.01

0.0001

0.0001

0.0001

0.001

0.01

0.01

0.001

0.001

0.001

0.01

0.2

0.5

MVL

200

200

200

100

50

50

50

100

100

200

200

50

5

5

EVL

30

30

30

30

30

30

30

30

30

20

10

10

5

5

Time

1,287

3,231

31,769

31,335

29,578

28,852

5,843

3,836

3,957

16,673

496

559

951

1217

TL

0.0050

0.0082

0.0432

0.0497

0.0563

0.0047

0.0107

0.0094

0.0047

0.0045

0.0055

0.0049

0.1784

0.2898

TA

0.9989

0.9980

0.9866

0.9840

0.9819

0.9989

0.9973

0.9974

0.9988

0.9988

0.9986

0.9988

0.9533

0.9156

VL

0.1168

0.1398

0.0919

0.0902

0.0961

0.1446

0.1381

0.1465

0.1256

0.1395

0.1373

0.1638

0.2922

0.3325

VA

0.9663

0.9639

0.9697

0.9675

0.9657

0.9547

0.9618

0.9675

0.9667

0.9665

0.9565

0.9636

0.9033

0.8936

NNA

99.936

99.875

98.885

98.791

98.640

99.927

99.877

99.840

99.796

99.873

99.811

99.859

95.262

91.925

TP

2,880

2,719

2,761

2,761

2,773

2,824

2,783

2,709

2,812

2,764

2,823

2,754

2,316

2,138

FP

82

163

121

121

109

58

99

173

70

118

59

128

566

744

FN

99

44

64

64

85

147

97

40

114

54

156

79

92

99

TN

2,659

2,714

2,694

2,694

2,673

2,611

2,661

2,718

2,644

2,704

2,602

2,679

2,666

2,659

TPR

96

98

97

97

97

95

96

98

96

98

94

97

96

95

FPR

2

5

4

4

3

2

3

5

2

4

2

4

17

21
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epochs, learning rate (LR), maximal vector length (MVL) and embedding vector 
length (EVL). The characteristics of the model are training loss (TL), training accuracy 
(TA), validation loss (VL), validation accuracy (VA), total training accuracy (NNA), 
time in seconds, number of hidden layer parameters and classification accuracy 
expressed in receiver operating characteristic (ROC) points. Some well-known and 
established default settings for tested neural network problems were applied in our 
evaluation. As an optimization algorithm for the learning model we selected “Adam”, 
which is an extension to stochastic gradient descent that is widely adopted for deep 
learning applications in natural language processing. This method differs from 
standard stochastic gradient descent by changing the learning rate during training. 
This algorithm can be tuned using parameters such as: “alpha”, learning rate (0.001); 
“beta1”, the exponential decay rate for the first moment estimates (0.9); “beta2”, the 
exponential decay rate for the second-moment estimates (0.999); “epsilon”, a very 
small number to prevent any division by zero in the implementation (1E-8); and 
“decay”, the learning rate decay over each update (0.0). 

During the APK’s classification calculation using the neural network, there was a 
minor fluctuation of accuracy value (between 95.65 and 99.36). This is because the 
model employs a random weights initialization. Therefore, it is possible that the 
highest level of accuracy can be achieved with different parameter configurations. In 
the test scenario, we investigated the provided test APK collection to classify those 
applications by threat level (malware or benign) without involvement of a human 
analyst. Due to the large number of possible configurations in Table 3, we describe 
only the selected configurations, which demonstrate typical cases. LR is presented in 
the first column. The second column shows the MVL of the extracted features. In the 
third column, we show the length of embedding vector. Column “time” depicts the 
time required to train a model with the given parameter settings. The next five columns 
are related to the model training process and show training and validation accuracy 
and error. The final six columns show ROC values to assess evaluation accuracy based 
on labelled training dataset. 

The figure shows that the most productive settings for highest accuracy (up to 99.93) 
are LR=0.001, MVL=200, EVL=30, whereas “LR” and “MVL” are dominating. For 
a given training collection, the most accurate classification (TPR=97, FPR=3) was 
achieved by LR=0.0001, MVL=50, EVL=30. The smallest duration for model training 
was 496 seconds (LR=0.0001, MVL=200, EVL=10) and the longest operation time 
was 31,769 seconds with settings (LR=0.0001, MVL=200, EVL=30). This difference 
can be explained by the different embedding vector sizes. The larger the vector, the 
longer it takes to calculate the model. This evaluation also gives a simple overview of 
the detected impact of a particular setting, such as “EVL” for calculation speed, “LR” 
for learning accuracy and “maximal input vector length” for classification accuracy. 
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Having evaluated the model for different parameter configurations, we can conclude 
that a smaller LR provides higher accuracy, while employing more time for calculation. 
The MVL size has limited impact on the presented model, since APKs comprise a 
relatively small number of significant features, although the longer the EVL the more 
accurate the result. To prove that the remaining parameters were selected optimally 
and that their change would reduce the overall quality and accuracy of the model, in 
last two measurements presented in Table 3 we additionally reduced the “beta1” and 
“beta2” parameters (0.8, 0.899 and 0.7, 0.699) and the number of dense units of the 
activation function to 10 and 5 respectively. The reduced accuracy of the last two 
results confirms our hypothesis that the noted settings provide the best possible result, 
thus making model optimization easier. Higher accuracy is also related to the number 
of training parameters in the dense hidden layers of the model, which ranges between 
130 and 1,200,200. The number of these parameters is dependent on all the other 
aforementioned settings.

FIGURE 5. ROC PLOT OF NEURAL NETWORK TRAINING.

The classification effectiveness can be determined in terms of a Relative Operating 
Characteristic (ROC) using the labelled ground-truth query dataset. The SA analysis 
makes use of the separation of the provided APK samples into the two groups “benign” 
and “malware” provided by domain experts. For example, in the first sample in Table 
3, the provided algorithm detected 2,880 TP (True Positive), 82 FP (False Positive), 
2,659 TN (True Negative) and 99 FN (False Negative) APKs. The primary statistical 
performance metrics for ROC evaluation are sensitivity (highest is 0.98) or true 
positive rate and false positive rate (lowest is 0.02). For the first sample, the associated 
ROC value is represented by the point (0.02, 0.96). The ROC space (see Figure 5) 
demonstrates that the calculated FPR and TPR values for the evaluated categories are 
located very close to the so-called “perfect” classification point (0, 1). The distribution 
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of collection points above the red diagonal demonstrates quite good classification 
results that could be improved by refining the model settings. Two ROC points with 
deliberately roughly selected parameters are still situated above the red line, but as 
expected shifted lower, away from the perfect classification point. The calculation 
results demonstrate that the calculated classification values for the query APKs are 
located very close to the labelled classification. These results demonstrate that an 
automatic approach for APK classification of the method described is very effective 
and is a significant improvement on manual analysis. Therefore, an analysis method 
based on neural network technique can be suggested as an effective method for APK 
classification, and as a supporting method to establish cyber SA. The results of the 
analysis confirm our hypothesis that an automated approach is able to reliably classify 
APKs, thus making analysis of a large number of APKs a feasible and affordable 
process. However, further research is required to improve the decision and accuracy 
metrics of this method.

6. Conclusions

In this work we have presented an automated approach to classify Android smartphone 
applications (APKs) for establishing cyber situational awareness using neural 
networks. We have combined expertise gathered during the development of methods 
for application features extraction with the power of the neural network approach and 
expert system for decision support. 

The main contribution of this work is a real-time automatic solution that can classify 
smartphone applications as either “malware” or “benign” in a fast and effective 
manner based on a large number of labelled applications, in order to detect malware 
applications and to secure user devices. The presented method employs a knowledge 
base collected from domain experts to detect situational awareness risks. Ultimately, 
our research will lead to the creation of automated security assessment tools with 
more effective handling of smartphone applications.
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