
1

Neural Network-Based
Technique for Android
Smartphone Applications
Classification

Abstract: With the booming development of smartphone capabilities, these devices
are increasingly frequent victims of targeted attacks in the ‘silent battle’ of cyberspace.
Protecting Android smartphones against the increasing number of malware applications
has become as crucial as it is complex. To be effective in identifying and defeating
malware applications, cyber analysts require novel distributed detection and reaction
methodologies based on information security techniques that can automatically
analyse new applications and share analysis results between smartphone users. Our
goal is to provide a real-time solution that can extract application features and find
related correlations within an aggregated knowledge base in a fast and scalable way,
and to automate the classification of Android smartphone applications. Our effective
and fast application analysis method is based on artificial intelligence and can support
smartphone users in malware detection and allow them to quickly adopt suitable
countermeasures following malware detection. In this paper, we evaluate a deep
neural network supported by word-embedding technology as a system for malware
application classification and assess its accuracy and performance. This approach
should reduce the number of infected smartphones and increase smartphone security.
We demonstrate how the presented techniques can be applied to support smartphone
application classification tasks performed by smartphone users.

Keywords: Cyber security, neural network, AI, smartphone, malware

Roman Graf
Austrian Institute of Technology GmbH
Vienna, Austria
roman.graf@ait.ac.at

Ross King
Austrian Institute of Technology GmbH
Vienna, Austria
ross.king@ait.ac.at

L. Aaron Kaplan
CERT.AT
Vienna, Austria	
kaplan@cert.at

2019 11th International Conference on Cyber Conflict:
Silent Battle
T. Minárik, S. Alatalu, S. Biondi,
M. Signoretti, I. Tolga, G. Visky (Eds.)
2019 © NATO CCD COE Publications, Tallinn

Permission to make digital or hard copies of this publication for internal
use within NATO and for personal or educational use when for non-profit or
non-commercial purposes is granted providing that copies bear this notice
and a full citation on the first page. Any other reproduction or transmission
requires prior written permission by NATO CCD COE.

2

1. Introduction

The Android operating system for tablets, phones and smart devices is by far the most
widespread mobile operating system in the world, with millions of active devices.
Millions of new malware programs have been released for this platform in recent
years. The market share of exploits that target the Android platform makes it the
second most targeted platform for running exploit attacks. The goal of this paper is to
train a neural network to evaluate the discoverability and explainability of upcoming
attack patterns. Classification capabilities of neural networks are heavily reliant on
the quality of the underlying datasets, and subsequently even more dependent on
the granularity of extracted features. The presented technique (see Figure 1) will
apply deep neural networks and supervised learning to evaluate the capabilities of
detecting smartphone malware applications in Android. Currently there is a lack
of technology supporting an integrated solution of large-scale feature extraction
and neural network training. The goal of this approach is to release an open source
framework that provides integrated functionality along the required workflow. This
workflow comprises application source code extraction, feature composition, neural
network training and analysis of results. The components of this system are executed
at scale within Hadoop and GPU clusters. The platform supports publishing of the
harvested ground-truth dataset, the extracted features and the trained neural network
on an open data platform. To visualize the projects results and to raise awareness for
malware applications prevention in the general public, a demonstrator was developed
that allows live inspection of the trustworthiness of Android applications.

FIGURE 1. THE OVERVIEW OF ESTABLISHING THE CYBER SITUATIONAL AWARENESS USING
NEURAL NETWORK FOR APK CLASSIFICATION.

The neural network approach is widely used for different analytical tasks. A machine
learning framework based on word-embedding techniques can be used for the
classification of text files. Standard machine learning algorithms are incapable of

3

processing strings or plain text in their raw form; rather, they require numbers as
inputs to perform any type of calculations. In the word-embedding approach, words
are mapped to numerical vectors. The difference from other language processing
methods is that the embedding vector also keeps the context of the word in a sentence
or file. This improves the overall accuracy of the prediction model, compared to
simple counting of words in a file. Our approach provides a numerical representation
of contextual similarities between Android Package (APK) features extracted in text
format. Each feature is represented by a real-value vector with tens or hundreds of
dimensions. In contrast, other methods, such as a one-hot encoding, employ thousands
or millions of dimensions required for sparse word representations.

This paper is structured as follows. Section 2 gives an overview of related work and
concepts. Section 3 explains the APK classification workflow including the feature
extraction method and neural network training for APK classification. The expert
system issues and related rule engine are covered in Section 4. Section 5 presents
the experimental setup, applied methods end evaluation. Section 6 presents our
conclusions.

2. Related Work

The design of the presented framework is inspired by the DREBIN project (Rieck,
2004; Hoffmann, 2013), which combines a broad static analysis of gathered
smartphone application features and applies machine learning for identifying patterns
that are indicative of malware. The manifest and decompiled dex (Dalvik Executable)
codes are scraped to extract feature sets and DREBIN utilizes a linear SVM algorithm
(Shawe-Taylor, 2000), which assumes real-value inputs. The manifest file provides
features such as requested hardware components and system granted permissions,
declared components such as services or broadcast receivers and filtered intents which
are used for inter-process communication. By analysing the disassembled bytecode,
additional “hidden” features are gathered, such as restricted API calls, actually used
permissions, calls to sensitive resources (e.g. frequently used for obfuscation) and
a list of all network addresses. This demonstrated approach provides both effective
detection rates and explainable results and was able to outperform related approaches
as well as 9 out of 10 popular anti-virus scanners with a detection rate of 94% and a
false positive rate of 1%, and reliably detect all malware families except Gappusin.
DREBIN showed the importance of the different features sets and that their proper
composition can lead to reliable and explainable detection results using neural
networks and machine learning. While the methodology is well-documented, and the
collected corpus of 120 thousand apps (including 22% malware samples) is published
for academic re-use, the corpus itself is outdated (SDK level 12) and the DREBIN

4

framework and neural network itself are closed-source. Furthermore, DREBIN is
highly restricted in its learning-based detection capabilities as the project targeted
the smartphone as runtime and detection environment where such a dataset must be
heavily maintained and updated. The SVM approach is limited by the choice of the
kernel, which is a general weak point of SVM applications. Alternative algorithms
employing categorical features and labels are Naive Bayes (Schütze, 2008), Logistic
Regression (Cox, 1958) and Random Forests (Ho, 1995). Approaches based on
decision trees such as Random Forests are very fast to train, but quite slow to create
predictions once trained. A higher degree of accuracy requires additional trees, which
means losing performance. Naive Bayes often serves as a robust method for data
classification, but the vectors representing incident in Naive Bayes are larger than
in word-embedding methods and also Naive Bayes classifiers make a very strong
assumption on the shape of the data distribution. Further problems may result due
to data scarcity, which can result in probabilities going towards 0 or 1, leading to
numerical instabilities and worse detection results. Logistic regression like a Naive
Bayes method requires that each feature in an incident is independent from all other
features. Logistic regression models are also vulnerable to overconfidence as a result
of sampling bias.

A brief overview of related approaches for the detection of Android malware lists
some comparable methods for this task. Kirin (McDaniel, 2009) checks application
permissions, Stowaway (Wagner, 2011) analyses API calls to detect overprivileged
applications and RiskRanker (Jiang, 2012) identifies applications with different
security risks. However, none of these approaches includes multiple features sets or
features received from reverse-engineering the applications’ source code, elements
that were proven crucial for the detection results in DEBRIN. Open source tools
such as Smali2 and Androguard3 enable dissecting the application’s content for
subsequent feature extraction and are evaluated for their use within framework’s
extraction pipeline. The dedicated analysis system DroidScope (Droidscope, 2012),
which enables introspection at different layers of the Android platform, allows users
to dynamically monitor applications in a protected environment at runtime. Methods
of sandboxing try to mimic a real-world environment and aim to discover malicious
behaviour but are limited due to sophisticated obfuscation methods used in modern
malware. ParanoidAndroid (Bos, 2010) creates a virtual clone of the smartphone
that runs in parallel on a dedicated server and synchronizes with the activities of the
device. This configuration allows for monitoring the behaviour of applications on the
clone without disrupting the functionality of the real device, but the resources required
for a large number of devices are often not technically feasible. Dynamic analysis
tools, such as DroidRanger (Jiang Y. Z., 2012) are suitable for filtering malicious
applications from Android markets.

5

Dedicated open source frameworks in the domain of malware detection are rare.
A prominent but outdated system is MobileSandbox (Hoffmann, 2013), which is
designed to automatically analyse Android applications by combining a static and
dynamic approach, which for example allowed the analyst to log system calls to
native APIs. MobileSandbox provides a highly complex and immature system due
to the enormous integration effort and customizations required for the Davlik virtual
machine and emulators.

The advantage of the embedding method is that it not only takes into account features
such as count and word context, but also learns automatically from examples. The
autoencoder (Cheng-hua, 2008) makes use of neural networks, which are already in
use by latent semantic analysis for text categorization to reduce dimensionality and to
improve performance; but this method has the disadvantage of not using the context
of the feature. Another application (Lee, 1999) employs an artificial neural network to
improve text classifier scalability.

Classification methods implemented in these threat intelligence tools suffer from large
vector sizes and are less effective as the number of features rises. The main drawback
of existing text classification methods such as SVM or the Gensim tool is that they
require a huge database for training to provide meaningful results. Another common
disadvantage of these techniques is the lack of result transparency due to employing
vectors containing real-valued numbers. These tools provide results, but it is difficult
to explain how the results were calculated. In particular, the SVM approach is limited
by the choice of the kernel. Another disadvantage is the inability to handle words that
were not previously included in the training vocabulary.

Multiple researchers are developing an automated technology that will support an
information classification system. An attempt to classify the relationships between
documents and concepts employs principles of ontology. Currently, APKs can be
classified based on the features included in the package and in source code. Contrary
to this approach, we classify not only by data extracted from APK that can differ
from dataset to dataset, but we also employ additional rules implemented in an expert
system and take in account APK source, type, timestamp, dataset and other parameters.
This technique provides more accurate prediction.

Neural networks with word-embeddings in general also require large training datasets,
but for APK classification, taking into account the fact that we have multiple different
datasets, we will train multiple models for each dataset and additionally employ a rule
engine to produce accurate results compared to the case if we would just train one huge
model ignoring intrinsic differences in the datasets. Consequently, for the particular
use case of APK classification task, we suggest using the word-embedding neural

6

network solution that scales well because of the split-models concept and supportive
rule engine, while maintaining a high level of accuracy. Our goal is to make a more
accurate prediction for a specific dataset, employing the whole aggregated expert
knowledge and applying expert rules.

3. Application Classification Method

APK classification employs application features extraction and training of neural
network to produce a model for the queries. Deep Learning is employed for learning
in neural networks and describes a subset of machine learning algorithms that deal
with accurately assigning weights across many neural network layers. Three main
types of machine learning can be distinguished: Supervised, Unsupervised and
Reinforcement Learning. Supervised learning can solve classification problems.
Classification predicts previously defined categories for a given sample. In the case
of Android malware these categories are binary: “benign” or “malware”. Supervised
learning employs labelled training data to learn mapping functions from a given
input (embedding vector in our case) to a desired output value. A supervised learning
algorithm analyses the data through weights and activation functions that activate
neurons and produces an inferred function, which is then used for mapping new
samples or correctly determining classification labels for unseen instances.

A. Application Classification Using Neural Networks
Figure 1 provides an overview of establishing the cyber situational awareness using
neural networks for APK classification. This approach is based on a knowledge
base containing large number of labelled smartphone applications. This data can be
provided by different vendors, collected at different times for particular operating
systems, and may be separated by type of application. Therefore, for each use case
(Situational Awareness System – SAS) we propose to have a separate expert system
and associated decision rules. All such SAS systems are then aggregated in a common
expert system, which performs final classification. A user uploads their APK package
to the SAS. The system extracts features from this package, stores them for further
analysis and queries an APK model that was trained based on knowledge base. The
final classification result in the form of a report and signatures is disseminated by
means of a signatures feed for subscribed clients C1-Cn.

7

FIGURE 2. THE WORKFLOW FOR FEATURE EXTRACTION AND CLASSIFICATION OF APK USING A
NEURAL NETWORK APPROACH.

To employ the embedding method, features aggregated in text form must be
converted into numerical values, since machine learning algorithms and deep learning
architectures cannot process plain text. Therefore, each uploaded APK (see Figure 2)
is converted into an array of strings, where each string represents a particular feature.
Then strings are encoded by indices, and each feature string has a unique index. If
this feature repeats in the APKs, we re-use its index. Finally, arrays of indexes are
converted in one-hot encoded vectors, meaning that the position of each feature in
the original feature set is encoded using “1” if a feature exists in the given place
or “0” if not. After defining the number of latent factors expressed in the length of
the embedding vector, we convert produced on-hot vectors into embedding vectors,
giving an array of float numbers. Therefore, we create a list of embedding sequences
for each APK with embedding vector representation of each feature. Embedding
vectors are an input to the neural network.

The neural network is composed of an input embedding layer, a flattening layer and
two hidden layers, where the model will be trained to classify APKs as either “benign”
or “malware.” The flattening layer is required to enable a connection between the
dense and embedding layers. We flatten the two-dimensional output matrix of the
embedding layer (with one embedding for each feature in the input sequence of
features) to a one-dimensional vector used by the dense layer.

8

B. Application Features Extraction
The workflow process is composed of two parts. One process is a neural network
model training, where workflow acquires APK data from different sources such as
community feeds, threat intelligence tools and domain experts, which are vendors
or anti-malware producers. The model is trained and regularly updated by extended
knowledge from new APK collections. The query workflow execution begins with
reading a smartphone application package (see step 1 in Figure 2) provided by
a user and parsing the extracted content for features extraction in step 2. For the
acquisition computation we employ a parsing method developed by researchers who
reimplemented the DREBIN parsing method described in the DREBIN paper (Rieck,
2004). By means of extracted features, we obtain an APK vector. If the given APK is
not in the model, we additionally extend the model knowledge base for subsequent
training. In the next step we train the APK model using a neural network (step 3) or a
query trained model in step 4, applying the created feature vector. The model responds
with a tentative classification. Finally, we calculate the APK classification employing
an expert system and the decision rules in step 5. These rules comprise decision
logic and expert profile settings that are specific for an organisation. Factors such as
APK type, operating system, vendor, creation time and origin have an impact on the
resulting decision. At the end we provide a report accompanied by an APK signature.

4. Expert System

Table 1 lists the layers that are employed in the neural network, including their type,
activation function, size and parameter number.

TABLE 1: DEPENDENCY CHART WITH INTERACTIONS AMONG
THE RULES AND ASSOCIATED IMPACT FACTORS.

Install

+

+

+

+

+

+

+

+

+

+

Remove

+

+

+

+

+

+

+

+

+

+

Ignore

+

+

+

+

+

+

+

+

+

+

Alarm

+

+

+

+

+

Log

+

+

+

+

+

+

+

+

Clean

+

+

Quarantine

+

+

+

+

+

9

To organize the knowledge base (see Figure 1), we must structure the information
that has been obtained from the domain experts of APK domain and from conducted
experiments.

We aim to achieve the following objectives:

1)	 Define typical scenarios for smartphone application handling;
2)	 Identify the parameters used by cyber experts for APK handling;
3)	 Define the linguistic labels that are used by the experts to classify measured

values of each parameter and identify the range of each label when possible;
and

4)	 Define typical scenarios for determining the conditional rules that relate
these linguistic labels to specific control actions.

Knowledge acquisition for the knowledge base occurs through the domain expert.
In our case, these are cyber analysts and SOC operators who provide the knowledge
with typical application use cases, metrics and parameters that characterize the APK
analysis processes. Information retrieved from the APK packages is processed by the
customized domain model. This model enables structured and maintainable handling
of analysed data and its storage in a database for further treatment. Inferred data is
processed in an inference engine by rules application in order to provide the rationale
for a particular analysis action. A user communicates with the expert system using
GUI by sending a request query and receiving an advice in response.

The development of a knowledge base is an iterative process. Knowledge can be
encoded, tested, added, updated and removed. Potential problems with rule definition
and coverage are redundant rules, conflicting rules, rules that are subsumed by other
rules, unreachable rules, inconsistent rules and circular rules chains. In order to avoid
the rule-based systems faults described by Arman (2007), we generated a dependency
chart that shows the interactions among the rules (Nguyen, 1985). The dependency
chart presented in Table 1 gives an overview of the identified rules and associated
impact on the knowledge base. The dependency chart helps to find potential rules
problems and to keep an overview of the rules.

Among the most important rules (see Figure 3) are those regarding APK issues,
like “neural network model classification”, “metadata”, “file size”, “file name”
and “malware signature”. According to the requirements and circumstances for a
particular APK, an expert could leverage these rules; for example, if a file name has
a semantic meaning or if file size is of interest for analysis. Sometimes metadata
contains important and useful information. The “malware signature” rule becomes
significant in the case of known malware signature in an application source code. The

10

issue of “type” means that APK has significant risk if it belongs to particular type
of application e.g. gambling. The issues “vendor” and “source” could have higher
severity if the actors are known for producing malicious APKs.

FIGURE 3. AN EXAMPLE SELECTION OF FORWARD RULE CHAINING FOR SMARTPHONE
APPLICATIONS CLASSIFICATION.

Rules are associated with related actions. Table 1 gives an overview of these relations.
Upon the provided inputs, the rule engine can trigger actions, such as “install”,
“remove”, “ignore”, “alarm”, “quarantine”, “clean” or “log” the given APK. The
“clean” action is the most challenging and supposes an attempt to remove malware
from the APK, which is applicable only by a high value of APK. Other actions are
self-descriptive.

The previously defined rules should be organized in order to process input statements
(assertions) and to infer appropriate action and conclusions. A process of the forward
rule chaining for APK collection is presented in Figure 3. It is a process of moving
from the “if” patterns (antecedents) to the “then” patterns (consequents) in a rule-based
reaction system. We consider the antecedent as satisfied when “if” pattern matches the
assertion. Assertions are depicted in the figure as the black rectangles on the input side
and as the white rectangles on the output side. The rules are presented in the form of
blue semi-circles (R1-Rn). The rule is triggered if all the antecedents are satisfied.
A triggered rule is considered as fired if it produces a new assertion or performs an

11

action as output (white rectangle in the figure). Since our expert system is presently
focused on APK collections, we do not need a conflict-resolution procedure to resolve
possible rules conflicts. Managing dependencies, as depicted in Table 1, reduces the
risk of conflicting rules and lists rules required to distinguish malware from other
applications. A variable x acquires value as antecedent pattern is matched to assertion.
For example, using information from well-established and reliable “FDroid tool”, rule
R3 determines that an application stems from known malicious source:

R3:	 If ?x is provided by known malicious source
	 Then ?x is not trusted

The rule-based system starts APK classification with the rule R1. Suppose that
particular APK was classified by the neural network model as malware. Then if the
antecedent pattern “?x is a malware” matches that assertion, the value x becomes “is
a malware candidate” and rule R1 fires. Because application is an Android APK, rule
R2 fires, establishing that the document “has matching OS”. Rule R3 fires with the
value “is not trusted”. If two input assertions match an antecedent pattern, rule R4
fires. The output assertions of the first three rules become the input assertion for the
rule R5 and if there is a match to the antecedent pattern the rule fires with the value
“is a malware”. Finally, if the input assertions of rule R6 match, the rule fires with
resulting action “is an older malware game application to remove”.

The output of the rule-based system is a conclusion for a malware classification. The
classification of the given APK is calculated based on the features of the associated
APK. The inference engine performs conditional rules and classification analysis,
infers appropriate action and formulates advice using relation of linguistic labels to
specific control actions.

5. Experimental Evaluation

A. Evaluation Data Set
The experimental dataset with ground-truth labels was provided by firms I and C
and processed on an ABC server, which comprises Hadoop and GPU clusters. We
split samples into test (5,640), validation (5,076) and training sets (45,676). For
feature extraction we employ APK feature extractor described on a research site1 and
reimplemented on GitHub.2

B. Experimental Results and Interpretation
Classification of APK samples into benign and malware was evaluated employing
techniques described in the previous sections. Features were extracted from APK

1	 https://www.sec.cs.tu-bs.de/~danarp/drebin/
2	 https://github.com/MLDroid/drebin

12

packages and converted in embedding vectors. Here is an example selection of loaded
features:

•	 UsedPermissionsList_android.permission.VIBRATE
•	 UsedPermissionsList_android.permission.ACCESS_NETWORK_

STATE
•	 UsedPermissionsList_android.permission.INTERNET
•	 BroadcastReceiverList_com.google.android.apps.
	 analytics.AnalyticsReceiver
•	 SuspiciousApiList_Landroid/content/Context.getSystemService
•	 SuspiciousApiList_Landroid/app/Activity.getSystemService

Embedding vectors describing loaded features were used as an input to a neural
network. Table 2 lists the layers employed in the neural network including their type,
activation function, size and parameter number. The total number of parameters used
in the input and hidden layers during the training was 19,546,001. We employed an
embedding approach for the input layer and sigmoid activation function for the dense
layer. The total training time was 29,578 seconds. The model parameter settings for
this particular training is presented in the fifth row in Table 3.

TABLE 2: SUMMARY OF THE NEURAL NETWORK TRAINING PROCESS.

Figure 4 visualizes the training results. We can see that, in general, the model training
accuracy improves with every iteration (epoch) from 0.845 at the beginning to 0.982 at
the end, which is sufficiently good; whereas training loss (error) of original information
decreases from 0.362 to 0.056. This means that the outputs will be degraded compared
to the original inputs, but it is an acceptable rate. Similarly, validation accuracy is in
the range between 0.931 and 0.966. Validation loss decreases from 0.191 to 0.096.

Layer

Input layer

Hidden layer 1

Hidden layer 2

Hidden layer 3

Type

Embedding

Flatten

Dense

Dense

Size

200x30

6,000

50

1

Parameters #

19,245,900

0

300,050

51

Activation Function

Sigmoid

Sigmoid

13

FIGURE 4. ACCURACY AND LOSS CHARACTERISTICS BY NEURAL NETWORK TRAINING.

C. Evaluation Effectiveness
Table 3 shows the impact of parameter tuning on the neural network output and
accuracy.

TABLE 3: IMPACT OF PARAMETER CHANGING ON NEURAL NETWORK OUTPUT AND ACCURACY.

Multiple factors can impact characteristics of the neural network model; some of them
are depicted in Table 3. These factors are optimization algorithm, maximal length of
the embedding vector, dense units number, activation functions, number of training

LR

0.001

0.01

0.0001

0.0001

0.0001

0.001

0.01

0.01

0.001

0.001

0.001

0.01

0.2

0.5

MVL

200

200

200

100

50

50

50

100

100

200

200

50

5

5

EVL

30

30

30

30

30

30

30

30

30

20

10

10

5

5

Time

1,287

3,231

31,769

31,335

29,578

28,852

5,843

3,836

3,957

16,673

496

559

951

1217

TL

0.0050

0.0082

0.0432

0.0497

0.0563

0.0047

0.0107

0.0094

0.0047

0.0045

0.0055

0.0049

0.1784

0.2898

TA

0.9989

0.9980

0.9866

0.9840

0.9819

0.9989

0.9973

0.9974

0.9988

0.9988

0.9986

0.9988

0.9533

0.9156

VL

0.1168

0.1398

0.0919

0.0902

0.0961

0.1446

0.1381

0.1465

0.1256

0.1395

0.1373

0.1638

0.2922

0.3325

VA

0.9663

0.9639

0.9697

0.9675

0.9657

0.9547

0.9618

0.9675

0.9667

0.9665

0.9565

0.9636

0.9033

0.8936

NNA

99.936

99.875

98.885

98.791

98.640

99.927

99.877

99.840

99.796

99.873

99.811

99.859

95.262

91.925

TP

2,880

2,719

2,761

2,761

2,773

2,824

2,783

2,709

2,812

2,764

2,823

2,754

2,316

2,138

FP

82

163

121

121

109

58

99

173

70

118

59

128

566

744

FN

99

44

64

64

85

147

97

40

114

54

156

79

92

99

TN

2,659

2,714

2,694

2,694

2,673

2,611

2,661

2,718

2,644

2,704

2,602

2,679

2,666

2,659

TPR

96

98

97

97

97

95

96

98

96

98

94

97

96

95

FPR

2

5

4

4

3

2

3

5

2

4

2

4

17

21

14

epochs, learning rate (LR), maximal vector length (MVL) and embedding vector
length (EVL). The characteristics of the model are training loss (TL), training accuracy
(TA), validation loss (VL), validation accuracy (VA), total training accuracy (NNA),
time in seconds, number of hidden layer parameters and classification accuracy
expressed in receiver operating characteristic (ROC) points. Some well-known and
established default settings for tested neural network problems were applied in our
evaluation. As an optimization algorithm for the learning model we selected “Adam”,
which is an extension to stochastic gradient descent that is widely adopted for deep
learning applications in natural language processing. This method differs from
standard stochastic gradient descent by changing the learning rate during training.
This algorithm can be tuned using parameters such as: “alpha”, learning rate (0.001);
“beta1”, the exponential decay rate for the first moment estimates (0.9); “beta2”, the
exponential decay rate for the second-moment estimates (0.999); “epsilon”, a very
small number to prevent any division by zero in the implementation (1E-8); and
“decay”, the learning rate decay over each update (0.0).

During the APK’s classification calculation using the neural network, there was a
minor fluctuation of accuracy value (between 95.65 and 99.36). This is because the
model employs a random weights initialization. Therefore, it is possible that the
highest level of accuracy can be achieved with different parameter configurations. In
the test scenario, we investigated the provided test APK collection to classify those
applications by threat level (malware or benign) without involvement of a human
analyst. Due to the large number of possible configurations in Table 3, we describe
only the selected configurations, which demonstrate typical cases. LR is presented in
the first column. The second column shows the MVL of the extracted features. In the
third column, we show the length of embedding vector. Column “time” depicts the
time required to train a model with the given parameter settings. The next five columns
are related to the model training process and show training and validation accuracy
and error. The final six columns show ROC values to assess evaluation accuracy based
on labelled training dataset.

The figure shows that the most productive settings for highest accuracy (up to 99.93)
are LR=0.001, MVL=200, EVL=30, whereas “LR” and “MVL” are dominating. For
a given training collection, the most accurate classification (TPR=97, FPR=3) was
achieved by LR=0.0001, MVL=50, EVL=30. The smallest duration for model training
was 496 seconds (LR=0.0001, MVL=200, EVL=10) and the longest operation time
was 31,769 seconds with settings (LR=0.0001, MVL=200, EVL=30). This difference
can be explained by the different embedding vector sizes. The larger the vector, the
longer it takes to calculate the model. This evaluation also gives a simple overview of
the detected impact of a particular setting, such as “EVL” for calculation speed, “LR”
for learning accuracy and “maximal input vector length” for classification accuracy.

15

Having evaluated the model for different parameter configurations, we can conclude
that a smaller LR provides higher accuracy, while employing more time for calculation.
The MVL size has limited impact on the presented model, since APKs comprise a
relatively small number of significant features, although the longer the EVL the more
accurate the result. To prove that the remaining parameters were selected optimally
and that their change would reduce the overall quality and accuracy of the model, in
last two measurements presented in Table 3 we additionally reduced the “beta1” and
“beta2” parameters (0.8, 0.899 and 0.7, 0.699) and the number of dense units of the
activation function to 10 and 5 respectively. The reduced accuracy of the last two
results confirms our hypothesis that the noted settings provide the best possible result,
thus making model optimization easier. Higher accuracy is also related to the number
of training parameters in the dense hidden layers of the model, which ranges between
130 and 1,200,200. The number of these parameters is dependent on all the other
aforementioned settings.

FIGURE 5. ROC PLOT OF NEURAL NETWORK TRAINING.

The classification effectiveness can be determined in terms of a Relative Operating
Characteristic (ROC) using the labelled ground-truth query dataset. The SA analysis
makes use of the separation of the provided APK samples into the two groups “benign”
and “malware” provided by domain experts. For example, in the first sample in Table
3, the provided algorithm detected 2,880 TP (True Positive), 82 FP (False Positive),
2,659 TN (True Negative) and 99 FN (False Negative) APKs. The primary statistical
performance metrics for ROC evaluation are sensitivity (highest is 0.98) or true
positive rate and false positive rate (lowest is 0.02). For the first sample, the associated
ROC value is represented by the point (0.02, 0.96). The ROC space (see Figure 5)
demonstrates that the calculated FPR and TPR values for the evaluated categories are
located very close to the so-called “perfect” classification point (0, 1). The distribution

16

of collection points above the red diagonal demonstrates quite good classification
results that could be improved by refining the model settings. Two ROC points with
deliberately roughly selected parameters are still situated above the red line, but as
expected shifted lower, away from the perfect classification point. The calculation
results demonstrate that the calculated classification values for the query APKs are
located very close to the labelled classification. These results demonstrate that an
automatic approach for APK classification of the method described is very effective
and is a significant improvement on manual analysis. Therefore, an analysis method
based on neural network technique can be suggested as an effective method for APK
classification, and as a supporting method to establish cyber SA. The results of the
analysis confirm our hypothesis that an automated approach is able to reliably classify
APKs, thus making analysis of a large number of APKs a feasible and affordable
process. However, further research is required to improve the decision and accuracy
metrics of this method.

6. Conclusions

In this work we have presented an automated approach to classify Android smartphone
applications (APKs) for establishing cyber situational awareness using neural
networks. We have combined expertise gathered during the development of methods
for application features extraction with the power of the neural network approach and
expert system for decision support.

The main contribution of this work is a real-time automatic solution that can classify
smartphone applications as either “malware” or “benign” in a fast and effective
manner based on a large number of labelled applications, in order to detect malware
applications and to secure user devices. The presented method employs a knowledge
base collected from domain experts to detect situational awareness risks. Ultimately,
our research will lead to the creation of automated security assessment tools with
more effective handling of smartphone applications.

References

Arman, N. (2007). Fault detection in dynamic rule bases using spanning trees and disjoint sets. The International
Arab Journal of Information Technology, Vol. 4, No. 1, pp. 67-72. Palestine.

Auria, L. (2008). Support Vector Machines (SVM) as a Technique for Solvency Analysis. DIW Berlin.

Bos, H. (2010). Paranoid android: Versatile protection for smartphones. In Proc. of Annual Computer Security
Applications Conference (ACSAC).

17

Cheng-hua, Y. B.-b. (2008). Latent semantic analysis for text categorization using neural. in Knowledge-Based
Systems, 21, pp. 900-904.

Cox, D. R. (1958). The Regression Analysis of Binary Sequences. Journal of the Royal Statistical Society. Series
B (Methodological), (pp. 215-242). Royal Statistical Society, Wiley.

Droidscope, L.-K. Y. (2012). Seamlessly reconstructing os and dalvik semantic views for dynamic android
malware analysis. In Proc. of USENIX Security Symposium, (pp. 393–407).

Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference on Document Analysis
and Recognition, (pp. 278-282).

Hoffmann, M. S. (2013). MobileSandbox: Looking Deeper into Android Applications. In Proc. 28th
International ACM Symposium on Applied Computing (SAC).

Jiang, M. G. (2012). Riskranker: scalable and accurate zero-day android malware detection. In Proc. of
International Conference on Mobile Systems, Applications, and Services (MOBISYS), (pp. 281–294).

Jiang, Y. Z. (2012). Hey, you, get off of my market: Detecting malicious apps in official and alternative android
markets. In Proc. of Network and Distributed System Security Symposium (NDSS).

Lee, S. L. (1999). Feature reduction for neural network based text categorization. In Proceedings 6th
International Conference on Advanced Systems for Advanced Applications, (pp. 195-202). Hsinchu.

McDaniel, W. E. (2009). On lightweight mobile phone application certification. In 13 Proc. of ACM Conference
on Computer and Communications Security (CCS), (pp. 235-245).

Molloy, H. P.-R. (2012). Using probabilistic generative models for ranking risks of android apps. In Proc. of
ACM Conference on Computer and Communications Security (CCS), (pp. 241–252).

Rieck, D. A. (2004). Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket. 21th
Annual Network and Distributed System Security Symposium (NDSS).

Schütze, C. D. (2008). Introduction to Information Retrieval. Cambridge University Press. New York, USA.

Shawe-Taylor, N. C. (2000). An introduction to support vector machines and others. Cambridge University
Press.

T. A. Nguyen, W. A. (1985). Checking an Expert System Knowledge Base for Consistency and Completeness. In
Proc of IJCAI-85, (pp. 375-378).

Wagner, A. P. (2011). Android permissions demystified. In Proc. of ACM Conference on Computer and
Communications Security (CCS), (pp. 627–638).

