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1. Abstract 

Signatures are the staple of threat detection. The Sigma rule format has emerged in recent years to fulfil 

this role for event logs and has become increasingly popular in security operations and threat hunting 

communities. The Public Sigma project provides rules and tooling for conversion into various SIEM 

provider alerting formats. It is not a match engine, so users are still expected to deploy a log 

management solution. In many cases, this is not ideal and real-time integration into existing log streams 

would be preferred. NATO CCDCOE has organised the Crossed Swords exercise for red-team training 

and the yellow team feedback system is one such use. We implemented an experimental rule engine in 

Golang and made the source code publicly available. Since then, we have rewritten that engine so it 

would serve as a better reference for anyone who needs to implement such a solution in their own 

environment. To support the goal, this paper provides a detailed technical outline of our implementation. 

We also conducted performance benchmarks to assess potential limitations of our approach and 

propose further developments. 
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2. Introduction 

Pattern-based intrusion detection systems (IDS) form the cornerstone of network security monitoring 

(NSM) and threat detection. Network defenders must be able to learn from past mistakes to cut off the 

attacker’s kill-chain as soon as possible. Defenders must also be able to easily share indicators of 

compromise (IoC) to collaboratively tackle threats and improve incident response efficiency. The 

network security community has used real-time IDS patterns for decades as a solution to this problem, 

with Suricata (“Suricata,” 2020) and Snort (“Snort,” 2020) having emerged as de facto open-source tools 

for the task. Likewise, YARA (“YARA,” 2020) fulfills this role for files in malware analysis. 

Pattern matching on event logs is usually relegated to data analytics platforms that function as SIEM 

systems and data warehouses. They usually ingest logs to an internal archive while maintaining indexes 

for fast data retrieval, commonly with custom query language and APIs. Elasticsearch (“Elastic stack,” 

2020) and Splunk (“Splunk,” 2020) are well-known and heavily adopted products that employ this 

method. These tools commonly implement mechanisms for defining alert rules, but not in a way that is 

interoperable with competing products. Each organisation uses different software stacks and thus deals 

with different kinds of logs. With security data being sensitive by nature, this has left the logging field 

largely without a central repository of open and community-driven alert rules, something that packet 

capture communities have enjoyed for decades, at least until recent years. 

Sigma (Roth, 2020a) was developed as a generic signature format for SIEM systems. It defines a flexible 

rule structure in yaml format, provides python tools for rule parsing and conversion to supported SIEM 

rule formats and maintains an up-to-date repository of community-provided rules for threat detection. 

Essentially, the goal of the project is to avoid vendor lock-in and to simplify event log IoC sharing, as 

alert rules written in sigma could be converted to any vendor format. Sigma does not do any pattern 

matching or alerting by itself; rather it acts as a translation layer and IoC sharing platform. Thus, users 

are still expected to maintain a fully-fledged SIEM system with alerting capabilities. 

These systems are well known for their significant resource requirements not only in terms of hardware 

and licensing fees, but also in daily system administration. Someone, usually a team of people, needs 

to monitor those tools, keep them up to date, re-index data if needed, keep up with new features and 

depreciations, communicate support requests, verify supply chain integrity, etc. By comparison, 

implementing a custom tool is often frowned upon, especially in corporate and military environments, 

as it is often seen as the more difficult option. This paper has two goals. First, to demonstrate a 

counterpoint that a small custom-built streaming tool can easily handle a task usually relegated to much 

larger databases. Second, to present a technical specification for implementing a streaming Sigma rule 

engine, something that to the best of our knowledge did not exist during Crossed Swords 2020. 

2.1 Real-time engine for Crossed Swords 2020 

The NATO CCDCOE has organised Exercise Crossed Swords (XS) each year since 2015. It aims to 

train the red team, whereas the yellow team is tasked with providing real-time feedback to players. 

During those years, we have been developing Frankenstack (Kont et al., 2017), a pipeline of open-

source security and analytics tools for collecting raw data from targets and game network capture, to 

filter, to correlate and finally to present digested information to players as feedback on their activities. 

While designing this stack, we are faced with numerous constraints. 

Feedback should reach players as soon as possible, with minimal human intervention. If a red 

teamer executes an action within the gamenet, the arteafacts, if any, should trigger a timely notification 

on a central dashboard. A delayed data feed would most likely go unseen by players, as the exercise 

already subjects them to significant cognitive pressure. Data platforms that rely on bulk database 
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ingestion and indexing already have an inherent delay before data becomes available for querying, 

being near-real-time as opposed to true-real-time systems. A five- to fifteen-minute delay would make 

information on dashboards obsolete as playing teams might have moved on to their next objectives. 

The core of the feedback system must be vendor-agnostic and minimalist in design. Building the 

exercise means a heavy reliance on volunteer contributions and supporting nations. If the system core 

relied on an external vendor or contributor and that contributor was unable to attend, the entire exercise 

could be compromised. The compressed time frame of an exercise also leaves little or no time for 

debugging, even for a very familiar tool. SIEM solutions are infamous for their monolithic design and 

therefore not a good fit for this role. 

The core needs a simple rule language that fits into an asynchronous multi-consumer pub-sub 

model. We do not exclude existing analytic platforms, SIEM systems or vendor products from our stack. 

Elasticsearch has been a part of our stack since the beginning and many security vendors have joined 

our team to test their products in a unique live-fire environment. Rather, we do not treat any one security 

product as an end-all solution, but as another input source that produces a processed feed back to the 

system. Many tools consume the same input independently and, in some cases, somewhat redundantly 

and provide us with their unique insight. We need to be able to tie these feeds together. 

Previously, we used simple event correlator (SEC) for this task (Vaarandi, Blumbergs & Çalişkan, 2015). 

However, we soon concluded that SEC was not ideal for the role, being initially designed for complex 

event correlation on unstructured messages by using regular expressions to extract significant variables. 

All relevant event streams were already configured to output structured JSON events at source or 

normalised at the pre-processing phase. Rules therefore needed to select the correct JSON key and do 

a basic variable comparison or string matching on the value, but this meant writing rather unseemly Perl 

functions into most of our SEC rules. While calling Perl functions was indeed possible, accommodating 

this within the SEC rule syntax was cumbersome. Thus, our ruleset did not use more powerful correlation 

features, being limited mostly to Simple, SimpleWithThreshold and relatively few EventGroup rules. Put 

simply, we found the complexity unwarranted relative to our gains. 

Processing complex nested data structures directly within a full-blown programming environment 

seemed more promising. In hindsight, it seems we tried to correlate events too soon in the processing 

pipeline; SEC is an event correlation tool, not a programming language or data processing tool. 

Unfortunately, in our ruleset we tried to accommodate many of the data processing and transformation 

tasks which should have been completed prior to pushing events into SEC. This hindered the rule-

writing process and the lack of proper post-processing meant that even minor changes in the input event 

structure resulted in the need to rewrite a large portion of the rules. 

Atomic patterns recognition must be separated from correlation logic. Atomic events are raw 

messages emitted by a target system or sensor. Domain-specific knowledge and prior experience is 

needed to decide if they indicate a relevant security event. Some people specialise in Windows systems, 

others in Linux or network security. Event processing and correlation is a form of data science and big 

data analytics. Finding a person with such extensive set of skills is difficult, yet many rule formats 

combine those two sides. Security practitioners should be able to easily express their knowledge to 

produce contextualised events to analytics experts. 

We believe those requirements to also be applicable to good systems design in real-world production 

environments. 

2.2 Implementation language 

Sigma rule format fits these requirements well, but no open-source project existed for implementing it 

as a match engine and the existing Sigma toolset is written entirely in Python 3, an interpreted high-

level programming language with batteries included mentality that is designed to be easily readable and 
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simple to use. That is an excellent choice when the project scope is limited to processing highly dynamic 

input, executing offline conversion operations and sharing the logic in an easily approachable and 

newcomer-friendly manner. However, dynamically typed programming languages are not ideal for 

implementing streaming systems with heightened stability expectations that are constantly exposed to 

unknown input. Python is infamous for being easy to get started with and highly productive in small 

applications, yet incredibly difficult to debug and prone to unforeseen errors as the complexity of code 

base increases over the application’s lifetime. 

For example, passing a list to a function that is designed to process integers would result in a compile 

error in a statically typed language, yet be perfectly fine in a dynamically typed one and result in a 

runtime exception only when that code branch is executed. In some cases, this might not happen until 

the application has been in production for an extended amount of time. Changes to existing code base 

are also highly likely to introduce new bugs. Thus, statically typed languages require additional work 

during initial implementation, but produce more reliable software overall as many classes of bugs are 

discovered during compilation. 

Golang (Go programming language, 2020) was chosen for implementing the rule parser and match 

engine. Like Python, it is a simple and productive language, being developed by Google as a less 

verbose, faster to build and easier to manage replacement for C++ and Java. Unlike Python, however, 

it does not compromise on type safety, preferring to compile the entire code base along with 

dependencies to a single binary. As a result, binaries built with native Go can be shipped to any system 

targeted by the compile phase just like a python script, but without any need for dependency 

management on the client. It was also designed from inception to have a powerful concurrency model, 

an area that Python is severally lacking. 

Our initial core implementation of streaming Sigma rule engine used during XS2020 stands at 2,500 

lines of Go including tests and is publicly available in Github (Go Sigma Rule Engine, 2020). Subsequent 

sections explain the sigma rule format and technical details of our implementation in detail. 
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3. Sigma rule structure 

Before implementing a parser, let us explore the Sigma rule format. The analyst might be interested in 

tracking client-side beacons emitting from compromised workstations. A common red team technique 

is to deliver the malware payload with Powershell, whereas the malicious code is obfuscated in base64 

encoding. The full malicious script may be visible in event logs if Powershell or Sysmon (Windows 

Sysinternals - Sysmon, 2020) logging has been enabled. 

$s=New-Object IO.MemoryStream(,[Convert]::FromBase64String(\"OMITTED BASE64 STRING\"));  

A truncated ECS-formatted (Elastic Common Schema Overview, 2020) structured event message would 

contain the following structure. Note that interesting values are in the channel and ScriptBlockText fields. 

{ 

  "event_id": 4104, 

  "channel": "Microsoft-Windows-PowerShell/Operational", 

  "task": "Execute a Remote Command", 

  "opcode": "On create calls", 

  "version": 1, 

  "record_id": 1559, 

    "winlog": { 

        "event_data": { 

            "MessageNumber": "1", 

            "MessageTotal": "1", 

            "ScriptBlockText": "$s=New-Object IO.MemoryStream(,[Convert]::FromBase64String(\"OMITT

ED BASE64 STRING\"));", 

            "ScriptBlockId": "ecbb39e8-1896-41be-b1db-9a33ed76314b" 

        } 

    } 

} 

The analyst can then describe the event in Sigma format. Note how the rule specifies the interesting 

pattern along with where it might be observed and defines various meta data fields present in Sigma 

specification (Roth, 2020b). 

author: Mauno Pihelgas 

description: > 

  Detects suspicious PowerShell  

  invocation command parameters 

detection: 

  condition: selection 

  selection: 

    winlog.event_data.ScriptBlockText: 

    - ' -FromBase64String' 

falsepositives: 

- Penetration tests 

- Very special / sneaky PowerShell scripts 

fields: 

- winlog.event_data.ScriptBlockText 

id: 697e4279-4b0d-4b14-b233-9596bc1cacda 

level: high 

logsource: 
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  product: windows 

  service: powershell 

status: experimental 

tags: 

- attack.execution 

- attack.defense-evasion 

- attack.t1064 

title: Encoded ScriptBlock Command Invocation 

We can define following Go struct to express Sigma fields and their respective types. For the uninitiated, 

a struct is a custom type which acts as a collection of variables. These variables can be of any built-in 

or custom type. However, those types must be known beforehand. 

type Rule struct { 

    Author         string   `yaml:"author" json:"author"` 

    Description    string   `yaml:"description" json:"description"` 

    Falsepositives []string `yaml:"falsepositives" json:"falsepositives"` 

    Fields         []string `yaml:"fields" json:"fields"` 

    ID             string   `yaml:"id" json:"id"` 

    Level          string   `yaml:"level" json:"level"` 

    Title          string   `yaml:"title" json:"title"` 

    Status         string   `yaml:"status" json:"status"` 

    References     []string `yaml:"references" json:"references"` 

 

    Logsource `yaml:"logsource" json:"logsource"` 

    Detection `yaml:"detection" json:"detection"` 

    Tags      `yaml:"tags" json:"tags"` 

} 

Most sigma fields are either string text or lists of them. They do not really serve a purpose in rule engine 

implementation, except for optional event tagging or grouping. Only the detection field is really needed 

for creating a pattern-matching object and thus the only struct element used by rule parser. However, 

id, logsource and tags fields were also used, albeit only on the calling application side for pre- and post-

processing. Firstly, let us consider the logsource field. 

type Logsource struct { 

    Product    string `yaml:"product" json:"product"` 

    Category   string `yaml:"category" json:"category"` 

    Service    string `yaml:"service" json:"service"` 

    Definition string `yaml:"definition" json:"definition"` 

} 

As the name implies, the logsource field defines the message source. However, we found the overall 

usage of this field to be fairly arbitrary and inconsistent. Therefore, we opted to transform the logsource 

values to fit our data model before parsing the ruleset. Our streaming tool would then use it as a pre-

filter to match incoming events to particular rulesets. For example, an event originating from snoopy 

audit daemon should never be exposed to a ruleset written explicitly for Windows events. Likewise, the 

tags field was only used post-match for decorating detected events with metadata. 

type Tags []string 

 

type Result struct { 

    Tags 
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    ID, Title string 

} 

 

type Results []Result 

Each atomic event could match multiple rules. Therefore, our ruleset would return a list Result objects, 

each containing a matching rule name, identifier and predefined tags. Many rules in public Sigma 

rulesets are tagged with tactics and techniques from the MITRE ATT&CK (2020) framework. Our post-

processing tool would then parse those values into unique identifiers in an Enterprise ATT&CK matrix 

that could be used for event correlation and deduplication, enrich matching events with those identifiers 

and emit the event to the alert channel. 

Finally, we defined our detection field simply as a wrapper of a hashmap with unknown elements. 

type Detection map[string]interface{} 

We encountered quite large variation of fields in this map, as the values can contain strings, maps of 

strings or numbers, lists of strings or numbers, etc. In Go, the only choice in this scenario is to use an 

empty interface which means that the value is unknown a priori. Each value in that map needs to be 

type cast in runtime, to handle all possible scenarios. Those cases will be explored in the next 

subsection. 

3.1 Detection field 

Having looked at an example rule and explored its structure in Go, let us investigate the structure of the 

detection element. Consider our rule example from the previous section: 

detection: 

  condition: selection 

  selection: 

    winlog.event_data.ScriptBlockText: 

    - ' -FromBase64String' 

The condition field defines the search expression whereas other fields are known as identifiers, acting 

as pattern containers. Note that the condition field could easily be omitted if the detection map only 

contains one identifier, but should be mandatory when two or more identifiers are tied together with a 

logical conjunction or disjunction. 

detection: 

  condition: selection1 AND selection2 

  selection1: 

    winlog.event_data.ScriptBlockText: 

    - ' -FromBase64String' 

  selection2: 

    task: "Execute a Remote Command" 

Keys inside identifiers represent the values that are to be extracted from structured event messages, 

whereas dot notation signifies nested JSON structures. Values can be strings, numbers, Booleans or 

lists of those respective data types. Lists represent all possible patterns which would indicate malicious 

activity and thus are joined by logical disjunction. Selections are joined by logical conjunction, as they 

should help the rule writer to specify a more exact pattern. Thus, the previous example could be rewritten 

thus: 

detection: 

  condition: selection1 
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  selection1: 

    winlog.event_data.ScriptBlockText: 

    - ' -FromBase64String' 

    task: "Execute a Remote Command" 

Identifiers can broadly be classified into two categories – selection and keywords. The former represents 

key and value pairs in applicable event messages, as presented in prior examples. The latter is simply 

a list of possible patterns in an unstructured message or primary body section. 

condition: keywords 

keywords: 

  - 'wget * - http* | perl' 

  - 'wget * - http* | sh' 

  - 'wget * - http* | bash' 

  - 'python -m SimpleHTTPServer' 

Note the lack of message keys. When faced with this rule while parsing structured messages, the match 

engine implementor is left with two options: either to exhaustively try all fields, or to make an educated 

assumption and select the most appropriate one. For example, the syslog message structure is well 

known for delivering most useful information in the unstructured MSG field. Likewise, Windows event 

logs have a multi-line message section which often delivers many useful information pieces which are 

not present in other fields. Audit logs such as snoopy often present full commands executed by the user. 

The choice would be obvious in these cases and the keyword identifier could therefore be used as 

shorthand notation for accessing these fields. Naturally, the rule writer can mix keyword and selection 

identifiers as needed. Users can also rename those identifiers to contextualise their purpose. For 

example, negated identifiers often have filter or falsepositives in their naming pattern. 

condition: selection and not filter 

The only way to differentiate between selection and keyword identifier type is to check for keyword prefix 

in the identifier name and verify that the corresponding item is a list or raw value. Otherwise, we assume 

selection and verify that item is a map or a list of maps. We found that this approach worked relatively 

well in practice while parsing the public rules, regardless of being a best-effort approach. While the rule 

language could be enhanced with standardised notation to make this distinction more clear, we do not 

believe extra complexity to be warranted as identifier data types need to be validated by the rule parser, 

thus making extra standardisation redundant in practice while possibly making grouped and nested 

expressions needlessly complicated. 

condition: ( selection_1 and selection_2 ) or ( selection_3 and selection_4 ) 

These groupings are common in public Sigma repositories, though deep nesting is rarely used. 

Regardless, there is no theoretical limit to expression depth and any properly implemented parser 

should be able to recursively handle such a scenario. Expression groups can become quite lengthy. 

Many sigma rules use wildcards as a convenience feature. 

condition: all of selection* and not 1 of filter* | count() > 10 

Note that this expression also contains an aggregation which is separated from the main query 

expression via the pipe symbol. These constructs, along with the them identifier, were not implemented 

in the initial match engine due to time limitations before the exercise began. We did not deem the number 

of existing rules using these constructs sufficient to justify the extra implementation effort, particularly 

aggregations as their existence would expand our initial project scope from writing a streaming match 

engine to implementing a fully-fledged event correlator. Our stream platform makes extensive use of 

the Go fan-out concurrency model, whereby the processor module spawns a user-defined number of 

workers that consume messages from a common thread-safe channel. Each worker executes 

processing logic per message and produces processed messages to the output channel. Implementing 
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a count operator would mean either ensuring that all messages subject to a particular rule would be 

sent to the same worker, or maintaining a shared thread-safe counter using locking mechanisms or 

separate concurrent worker. Near keywords and streaming thresholds also require a full sliding window 

implementation, so a conscious decision was made to simply fall back on other correlation engines or 

batch queries if needed. This feature did present itself during the exercise and we will consider 

implementing these mechanisms in future work. 

Likewise, we simply decided to rewrite any wildcard and them keyword rules to a simpler format in the 

initial engine prototype. To clarify, the all of expression is essentially a shorthand for logical conjunction, 

whereas 1 of is for disjunction. A match expression presented above could therefore be rewritten thus: 

condition: (selection1 AND selection2 AND selectionN) AND NOT (filter1 OR filter2 OR filterN) 

The second engine version now supports this expansion, allowing the rule writer to use shorthand 

notation. Another construct missing in the initial version that is now supported is piped specifiers in the 

selection keys. 

selection: 

  CommandLine|endswith: '.exe -S' 

  ParentImage|endswith: '\services.exe' 

These expressions were relatively rare while building the stream engine but have since grown in 

popularity. The initial version simply splits those keys using the pipe symbol as delimiter, ignoring the 

specifier. However, second version uses HasPrefix(), HasSuffix() and Contains() methods from strings 

package in the Go standard library, depending on specifier enum value as extracted from the key. 

Finally, many existing rule files contain multiple YAML documents in the same file separated by a YAML 

document start operator (---). We noted that these rules simply incorporate multiple logsource and 

detection sets that signify similar or related events (e.g., detecting various types of credential dumping) 

with just a few keys that are changing. 

title: ... 

id: ... 

description: ... 

--- 

logsource: ... 

detection: ... 

--- 

logsource: ... 

detection: ... 

While this shorthand notation makes writing the rules easier, these rules needed to be expanded with 

the otherwise identical base metadata before loading them into the match engine. As an interesting 

aside, most of the existing rule files omit the start operator at the beginning of the ´yaml´ file, which is 

fine in the case of the PyYAML parser, but some other parsers (e.g., Java’s Jackson) might not process 

these files. 

Therefore, we decided not to handle these raw rules within the match engine, but rather to pre-process 

the rules using a custom ruleset transformation script written in Python. This transformation was needed 

anyway, as the logsource and generic field names needed to be customised for data streams in our 

environment. 
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4. Ruleset transformation 

Ruleset transformation was required for several reasons. First, we split rule files that contain one or 

more related rules into separate files. Second, we opted to employ our own logsource values and use 

them as a pre-filter to optimise the match engine and to scan only applicable rulesets (e.g., Windows 

event log messages should only be matched against rules written for Windows logs). Third, we needed 

to convert the generic field names used in the rule language into specific keys that are produced by 

tools in our data pipeline (e.g., Winlogbeat and Suricata). 

The following steps are combined into a pre-processing Python script that loads all the rule files, makes 

the necessary transformations and writes the new file using the original directory structure (e.g., ´linux´, 

´windows´, ´web´, etc.) of the original rules. 

4.1 Split combined rules 

To handle multiple rules in the same ´yaml´ file, the script first scans the file to detect if it contains 

multiple rules. If so, the script splits the file into separate YAML documents by document start operator 

(---). We then load the first YAML section in the file which typically contains all the required elements of 

a rule. The script processes and stores this first document as a separate rule, then proceeds to load the 

following documents, while retaining the first document as the template which contains the identical 

base metadata. 

4.2 Log source 

The sigma rules provide a flexible way to describe rules for any system, product or tool. In many cases 

the product field is fairly generic, such as linux or windows. However, sometimes the rule writer has 

been more specific and provided a rule that matches the output of a specific tool (e.g., the Qualys 

vulnerability scanner). Since we did not have these tools in our exercise environment, we simply left the 

logsource field unchanged in such cases. Other rules only provide a category instead of a specific 

system or product that would produce this log. For example, the categories dns and firewall were 

mapped to suricata as the most likely data source for network-specific rules. Overall, we specified four 

product values that matched our primary data sources: Windows, Linux, Suricata and Snoopy. 

4.3 Field names 

The Sigma rules often contain generic or standard field names for various types of systems and log 

sources. This is intentional, since rule writers cannot foresee all keys produced by different monitoring 

tools. For example, when describing the source IP of a network event, Sigma rules often use the ClientIP 

keyword. However, the Suricata EVE format uses the src_ip name and Zeek uses the id.orig_h field. 

The same concept was applied for converting Windows Event Log field names into keys produced by 

the Winlogbeat host agent in our environment. For example, the field ProcessCommandLine is 

transformed into winlog.event_data.ProcessCommandLine by Winlogbeat. 

Rules should be transformed according to the specific tools and log sources applicable in your 

environment. Sigma conversion tools already provided some mappings, but we needed to add many 

more to accommodate tools and data pipelines in our environment. For example, we wrote our custom 
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sigma rule that matched against the ScriptBlockText field in the Windows Event Log, so the 

corresponding winlog.event_data.ScriptBlockText translation had to be added. 
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5. Data acquisition 

The first order of business is to access the data. The number of possible log data sources and event 

formats is vast and managing them is a well-known problem. Many standardisation efforts exist, for 

example Elastic Common Schema (ECS). However, each simply adds another format that needs to be 

parsed by the streaming engine. While the Sigma toolset does provide utilities for converting rules 

between popular event formats, our engine still has to access nested keys while validating key 

existence. Attempting to access a missing map key will cause runtime panic in most programming 

languages. The user might also be working with static structs instead of dynamic dictionaries, which is 

good for performance and type safety. Another use-case would be matching unstructured strings or byte 

arrays with simple keyword rules. 

This section explores how these use-cases could be handled to be compatible with Sigma rule format. 

5.1 Field access 

Our general approach is quite simple. We define interface methods that users should implement for their 

own data types. Our code relies only on those methods and trusts the user to properly present proper 

fields that are defined in a rule or indicate field absence. To achieve this, we define an interface per rule 

type and embed it in our Event definition that will be used internally by the rule engine. 

// Keyworder implements keywords sigma rule type on arbitrary event 

// Should return list of fields that are relevant for rule matching 

type Keyworder interface { 

    // Keywords implements Keyworder 

    Keywords() ([]string, bool) 

} 

 

// Selector implements selection sigma rule type 

type Selector interface { 

    // Select implements Selector 

    Select(string) (interface{}, bool) 

} 

 

// Event implements sigma rule types by embedding Keyworder and Selector 

// Used by rules to extract relevant fields 

type Event interface { 

    Keyworder 

    Selector 

} 

This is a form of polymorphism that allows us to define deterministic input and output while abstracting 

implementation details. Unlike many other statically typed languages, Go version 1 does not support 

true compile-time generics, but can evaluate virtual method tables, or vtables, in runtime, thus allowing 

us to pass an interface to our internal match functions, as opposed to any concrete type. 

Note that the keyword rule should only be applicable to textual events. Some structured events could 

contain multiple fields that should be considered. Thus, we define Keyworder as the method that returns 

a list of string data types and a Boolean indicating if a particular rule applies for event type. If false, the 

slice value should default to nil. Deriving the interface name from the implemented method name is 

idiomatic for Go. 
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A selection rule does key lookups and value comparisons for structured events. For simplicity, we 

assume the message to conform to JSON standard and always be textual. Thus, our input value to the 

Selector method is a string. However, the value could be any data type defined in JSON and YAML 

standards and thus the return value is an empty interface that is implemented by every Go type and the 

user does not need to implement separate methods for textual, numeric or Boolean data types. Lacking 

true generics, our Go engine needs to assert concrete data types in runtime to maintain type safety. 

Consider some use-cases that our streaming engine would need to handle. 

 Dynamic JSON input 

Firstly, consider a truncated Suricata IDS alert for a fairly insignificant, yet verbose, event for web 

application scanning. These events usually indicate potential reconnaissance. 

{ 

  "timestamp": "2020-01-22T12:56:17.403749+0000", 

  "event_type": "alert", 

  "src_ip": "1.2.3.4", 

  "src_port": 53646, 

  "dest_ip": "2.3.4.5", 

  "dest_port": 1521, 

  "proto": "006", 

  "alert": { 

    "action": "allowed", 

    "gid": 1, 

    "signature_id": 2010936, 

    "rev": 3, 

    "signature": "ET SCAN Suspicious inbound to Oracle SQL port 1521", 

    "category": "Potentially Bad Traffic", 

    "severity": 2 

  }, 

  "payload_printable": "TRUNCATED" 

} 

Extensible Event Format (EVE) (Eve JSON Output, 2020) is a highly dynamic nested JSON document, 

with more than 1,000 possible keys. Value presence and data types depend on Suricata daemon 

configuration. For example, a DNS event logger could be configured to log only some resource record 

types, like A and AAAA, while omitting others, like MX and NS. These records could be presented 

individually as text records or logged in bulk as lists of dictionaries. 

While we opted to generate static structs during exercises to handle these variations, this approach 

could easily lose fields if any were overlooked in our definition and a lot of work is needed to verify each 

field type, to handle fields with multiple types and to keep this definition up to date for new Suricata 

releases. Alternatively, we could simply create a dynamic map data type that implements our 

EventChecker interface. 

// DynamicMap is a reference type for implementing sigma Matcher 

type DynamicMap map[string]interface{} 

 

// Keywords implements Keyworder 

func (s DynamicMap) Keywords() ([]string, bool) { 

    return nil, false 

} 
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// Select implements Selector 

func (s DynamicMap) Select(key string) (interface{}, bool) { 

    if val, ok := d[key]; ok { 

        return val, true 

    } 

    return nil, false 

} 

The interface implementor simply needs to return the correct value when asked, or indicate a missing 

value when the key is absent. Note that the keyword rule type can simply be indicated as not applicable 

to this event by returning a false value from the respective Keywords method, thus avoiding needless 

memory allocations if a Suricata event is evaluated against this rule type. 

This example lacks an important feature. It does not support nested JSON structures and the analyst 

would be unable to access any field in alert or any protocol substructures. A common notation for 

accessing these values is by concatenating nested keys with a dot symbol. For example, alert.category 

would return the value Potentially Bad Traffic. This feature can be implemented as a recursive function. 

// GetField is a helper for retrieving nested JSON keys with dot notation 

func GetField(key string, data map[string]interface{}) (interface{}, bool) { 

    if data == nil { 

        return nil, false 

    } 

    bits := strings.SplitN(key, ".", 2) 

    if len(bits) == 0 { 

        return nil, false 

    } 

    if val, ok := data[bits[0]]; ok { 

        switch res := val.(type) { 

        case map[string]interface{}: 

            return GetField(bits[1], res) 

        default: 

            return val, ok 

        } 

    } 

    return nil, false 

} 

Runtime type casting is unavoidable when dealing with dynamic input. Our approach splits the key into 

two , delimited by the first dot symbol, and attempts to extract a map element using the first value. A 

switch statement then attempts to cast the result into a map datatype. If successful, the function will 

recursively call itself with the second part and extracted container as arguments. Otherwise, the value 

is returned as a positive match. 

We can then implement our Event interface methods as wrappers around this function and satisfy the 

Sigma engine requirements with relative ease. 

// Keywords implements Keyworder 

func (s DynamicMap) Keywords() ([]string, bool) { 

    if val, ok := s.Select("alert.signature"); ok { 

        if str, ok := val.(string); ok { 

            return []string{str}, true 

        } 

    } 
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    return nil, false 

} 

// Select implements Selector 

func (s DynamicMap) Select(key string) (interface{}, bool) { 

    return GetField(key, s) 

} 

Note that multiple fields could be returned to satisfy the keyword lookup, but each must be properly cast 

into a string data type and appended to the resulting list. 

 Static input 

On the opposite side of the spectrum, the user might be working with simple unstructured text messages. 

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost=2a08:1172:1

42:713::201 

Normalising these messages is outside the scope of the rule engine and many existing tools are already 

solving this problem. Nevertheless, we can demonstrate how even they can be used in our rule engine 

by wrapping a built-in string into a custom type. 

type Message string 

Lacking keys, the selection rule can be implemented as stub interface and only the keyword conversion 

truly matters. 

func (m Message) Keywords() ([]string, bool) { 

    return []string{string(m)}, true 

} 

func (m Message) Select(key string) (interface{}, bool) { 

    return nil, false 

} 

This idea can be taken further when considering well-known and standardised event formats. For 

example, consider the RFC3164 (Lonvick, 2001) formatted syslog message as presented with the 

following Go struct. 

type Syslog struct { 

    Timestamp time.Time `json:"@timestamp"` 

    Host      string    `json:"host"` 

    Program   string    `json:"program"` 

    Pid       int       `json:"pid"` 

    Severity  int       `json:"severity"` 

    Facility  int       `json:"facility"` 

    Sender    net.IP    `json:"ip"` 

 

    Message `json:"message"` 

} 

Note that the unstructured textual message field embeds our Message type, thus giving access to all 

associated methods. The following example illustrates a Select method that statically implements a key 

lookup. This approach provides better performance and type safety than the dynamic JSON example 

but requires more work, especially when handling complex messages. Code generation can be a 

perfectly acceptable solution when dealing with standardised formats that are unlikely to change, such 

as BSD syslog events. 
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func (m Syslog) Select(key string) (interface{}, bool) { 

    switch key { 

    case "timestamp", "@timestamp": 

        return m.Timestamp, true 

    case "host": 

        return m.Host, true 

    case "program": 

        return m.Program, true 

    case "pid": 

        return m.Pid, true 

    case "severity": 

        return m.Severity, true 

    case "facility": 

        return m.Facility, true 

    case "sender": 

        if m.Sender == nil { 

            return nil, false 

        } 

        return m.Sender.String(), true 

    case "message", "msg": 

        return m.Keywords(), true 

    default: 

        return nil, false 

    } 

} 

func (m Syslog) Keywords() ([]string, bool) { 

    return m.Message.Keywords() 

} 

Custom logic can be applied where needed. For example, IP address objects can be converted to string 

representation to be compatible with textual patterns in Sigma rules. As the net.IP type is actually a set 

of methods around slice datatype and therefore a pointer, its existence must always be checked or the 

tool might crash in runtime. Also, remember that a keyword identifier is simply shorthand for message 

selection and thus message key retrieval can be implemented by wrapping methods. This makes the 

overall code more explicit and consistent, as changes to how the Message object is handled would 

propagate to other types that embed it. 
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6. Rule components 

Having defined data extraction objects, we can now define one for a Sigma rule as well. A rule can be 

conceptualised as a function that produces a deterministic verdict for a particular input value. As before, 

we use polymorphism and can thus define a rule as an interface with an Event as input and True or 

False values as output. Subsequently, we embed this interface into Branch to make our interface naming 

more explicit. Branch can also be used as a platform for adding optimisation methods without 

overcomplicating Matcher. A rule of thumb is to keep the overall number of interface methods minimal 

to avoid excessive work during implementation or refactoring and to maintain a consistent naming 

scheme between interfaces and the methods that they implement. 

// Matcher is used for implementing Abstract Syntax Tree for Sigma engine 

type Matcher interface { 

    // Match implements Matcher 

    Match(Event) bool 

} 

// Branch implements Matcher with additional methods for walking and debugging the tree 

type Branch interface { 

    Matcher 

  // Other interface for walking the tree can be added later 

} 

// Tree represents the full AST for a sigma rule 

type Tree struct { 

    Root Branch 

} 

These core structures are enough as a basic rule framework. Subsequent subsections will explore 

individual nodes that will comprise the tree. 

6.1 Identifier leaf nodes 

As the reader might already guess, the final leaf nodes, the ones that will be doing actual pattern 

matching, will consist of Keyword and Selection objects. The atomic data structure for both is a list of 

patterns that are joined by logical disjunction. Each pattern is simply an object that holds a token and 

returns a verdict when presented with value extracted from an event. While we could re-use the Matcher 

interface, it might not be ideal for runtime efficiency and code readability. Instead, we opted to create 

another interface for matching on concrete types. 

// StringMatcher is an atomic pattern that could implement glob, literal or regex matchers 

type StringMatcher interface { 

    // StringMatch implements StringMatcher 

    StringMatch(string) bool 

} 

We use interface instead of a concrete type because Sigma rules can express multiple string matching 

techniques, like literal text patterns, prefix and suffix checks, wildcard glob patterns and regular 

expressions. For example, we implemented a regular expression pattern as a custom struct that wraps 

a compiled regular expression . 

// RegexPattern is for matching messages with regular expressions 

type RegexPattern struct { 
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    Re *regexp.Regexp 

} 

// StringMatch implements StringMatcher 

func (r RegexPattern) StringMatch(msg string) bool { 

    return r.Re.MatchString(msg) 

} 

Alternatively, the StringMatch method could wrap around matching methods in strings or bytes 

packages in a standard library, or glob methods from third party libraries. Our implementation uses all 

these methods. Consider the following Sigma pattern list as illustration of why this approach is useful: 

- "/ssh\s+-R/" 

- "cat /etc/*" 

- "python -m SimpleHTTPServer" 

- "python2 -m SimpleHTTPServer" 

- "python -m http.server" 

- "python3 -m http.server" 

- "/python\d? -m (http.server|SimpleHTTPServer)/" 

The first pattern is a regular expression signified by being enclosed with slash symbols. It can be 

powerful and precise, but is also the slowest by orders of magnitude. An attacker could enter any number 

of whitespace symbols between the ssh command and flag signifying a reverse connection, yet the 

pattern would still match. Second is a wildcard, or glob, that will also match on any arbitrary text 

proceeding the presented pattern. As yet, rule writers cannot specify whether proceeding symbols are 

alphanumeric, special, etc., nor can they specify advanced constructs like alterations or list of possible 

options. However, performance is much better than a regular expression engine and the user can write 

the pattern intuitively without having to be proficient in the regular expression language. Subsequent 

patterns are literal, requiring an exact match, so variations need to be expressed manually. For example, 

python versions 2 and 3 have different syntax for starting a web server and different operating systems 

default to different versions. Literal matches are also the most sensitive to insignificant variations like 

extra whitespace symbols, and thus are easiest to bypass. However, they are by far the fastest, as 

standard library string and byte operations are highly optimised. Handling different cases with multiple 

patterns could be faster than invoking complex regular expression state machines. 

On the engine side, this pattern list can be implemented as a slice of StringMatcher interfaces. Thus, 

the message can be evaluated in a loop. Since the patterns are joined by logical disjunction, the first 

match is enough and subsequent patterns no longer need to be evaluated. Our rule engine optimises 

this property at parse time by sorting the list according to concrete types and ensures that fast literal 

patterns are evaluated first and slow regular expressions last. This pattern list can also implement the 

StringMatcher interface, so it could be used interchangeably with atomic patterns. 

type StringMatchers []StringMatcher 

 

// StringMatch implements StringMatcher 

func (s StringMatchers) StringMatch(msg string) bool { 

    for _, m := range s { 

        if m.StringMatch(msg) { 

            return true 

        } 

    } 

    return false 

} 
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 Keyword 

Implementing a keyword identifier type is quite simple as it is essentially just a wrapper around the 

StringMatcher interface introduced in the previous section. Naturally, the object can also hold meta data 

like rule statistics, etc. 

type Keyword struct { 

    S StringMatcher 

    Stats 

} 

Compatibility with the Matcher interface can be achieved by creating a method that extracts all relevant 

keywords from the event and checks them against the embedded matcher. As before, the first positive 

match is sufficient for an early return. 

// Match implements Matcher 

func (k Keyword) Match(msg Event) bool { 

    msgs, ok := msg.Keywords() 

    if !ok { 

        return false 

    } 

    for _, m := range msgs { 

        if k.S.StringMatch(m) { 

            return true 

        } 

    } 

    return false 

} 

Note that the rule will skip all matching if Keyworder is implemented as a stub. 

 Selection 

While the selection type requires more complex logic, we can nevertheless reuse existing code. The 

atomic matcher is a value or list of values that needs to be evaluated against an event, allowing us to 

implement it with existing objects. Unlike keyword, however, selection rules contain multiple objects, 

each associated with a particular structured event key. Selection rules also define numeric and Boolean 

data types. Since items need to be checked sequentially, we wrap them into an object that also stores 

the key. 

type SelectionStringItem struct { 

    Key     string 

    Pattern StringMatcher 

} 

Note that we could use a map type as pattern container, but map is optimised for random access and 

its elements are not stored as a continuous memory block, thus making it sub-optimal for our 

implementing a pattern list. 

type Selection struct { 

    N []SelectionNumItem 

    S []SelectionStringItem 

    Stats 

} 
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Selection follows the opposite logic to keyword. While individual atomic values per element are still 

joined with logical disjunction, the elements themselves are joined with logical conjunction. Thus, 

selection is a map where every key must have a positive match while values are pattern lists where only 

the first match is sufficient. This means traversing a list of elements, first ensuring that the event has a 

key defined in the identifier and then verifying that the extracted value matches a pattern. 

// Match implements Matcher 

func (s Selection) Match(msg Event) bool { 

    for _, v := range s.S { 

        val, ok := msg.Select(v.Key) 

        if !ok { 

            return false 

        } 

    // Numeric matching omitted 

        switch vt := val.(type) { 

        case string: 

            if !v.Pattern.StringMatch(vt) { 

                return false 

            } 

        default: 

            s.incrementMismatchCount() 

            return false 

        } 

    } 

    return true 

} 

The example omits numeric matching for brevity, but users should consider all possible numeric types 

when implementing a matcher. All JSON numbers are by definition float64, but decoding structured 

events into custom types could yield signed or unsigned integers of any length, thus causing a false 

negative due to type mismatch. 

Some selection rules are defined as lists of maps where each element follows a selection convention, 

but only one element need match. We simply parsed each element into a distinct selection and merged 

them into a disjunction object, rather than treating it as special variation of the rule format. 

 Logic operations 

Having defined our leaf nodes, the next step is to construct their logical connections. The simplest 

method for doing that is by constructing a slice of branches and evaluating each element sequentially 

when implementing the Matcher interface. 

As each logic gate also implements the Matcher interface, thus qualifying as Branch, it fully supports 

nested expressions. An element could be a leaf identifier as described in prior sections, or another logic 

gate with an arbitrary number of recursive child nodes. The logic gate simply functions as a container 

that modifies the Boolean results from the child elements, but does not know how those results are 

achieved. While not built as an actual binary search tree, the resulting construct functions very similarly 

to one. 

// NodeSimpleAnd is a list of matchers connected with logical conjunction 

type NodeSimpleAnd []Branch 

 

// Match implements Matcher 

func (n NodeSimpleAnd) Match(e Event) bool { 
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    for _, b := range n { 

        if !b.Match(e) { 

            return false 

        } 

    } 

    return true 

} 

A logical conjunction, or AND gate, can only return a positive result if all the child elements have 

evaluated as true. Thus, the first negative result is sufficient for early return and subsequent elements 

are not evaluated. The opposite logic applies to the logical disjunction, or OR gate. The first positive 

result is sufficient for early return, otherwise all elements would be evaluated for a definitive false. As 

the reader might already assume, a NOT gate is simply an object that negates its only child node, 

whereas that child could be any leaf or branch in a tree. 

// NodeNot negates a branch 

type NodeNot struct { 

    B Branch 

} 

 

// Match implements Matcher 

func (n NodeNot) Match(e Event) bool { 

    return !n.B.Match(e) 

} 

Note that these logic gates could easily be implemented as nodes in a binary tree or any other efficient 

data structure such as a linked list. Our prototype converts two element slice types into binary tree nodes 

with left and right branches which are evaluated with static logic expressions against direct pointers 

rather than dynamic loops although this design might not yield a significant performance gain in practice 

as sequential looping over a continuous block of memory could be better for CPU cache efficiency. 

However, our code does completely needless runtime loops when the logic expression only has one 

element. In that case, the first and only element is simply extracted and returned as-is. As mentioned 

before, the parent object that ends up wrapping the result is agnostic to Branch type. Likewise, lists with 

only two elements are converted into a simple binary tree node. 

func (n NodeSimpleAnd) Reduce() Branch { 

    if len(n) == 1 { 

        return n[0] 

    } 

    if len(n) == 2 { 

        return &NodeAnd{L: n[0], R: n[1]} 

    } 

    return n 

} 

Our approach simply uses the list method in other cases. However, these lists could be converted into 

a right-leaning binary tree with a recursive builder function. 

func newConjunction(s NodeSimpleAnd) Branch { 

    if l := len(s); l == 1 || l == 2 { 

        return s.Reduce() 

    } 

    return &NodeAnd{ 

        L: s[0], 
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        R: newConjunction(s[1:]), 

    } 

} 
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7. Abstract syntax tree 

Our goal was to convert Sigma rule expression with associated pattern containers into an abstract 

syntax tree (AST), which is a hierarchical machine-readable representation of source code. This section 

outlines the overall process for achieving that. For example, consider the following expression: 

condition: (selection_1 and selection_2) and not ( filter1 or filter2 ) 

The resulting rule object would have following hierarchy. Note that circles denote leaf identifiers which 

do the actual pattern matching, and diamonds denote logic functions that simply pass the event while 

modifying the results from leaf nodes. 

 

FIGURE 1: AST 

To construct this hierarchical object, we need two components: a lexer for tokenising the raw input and 

a parser for constructing a rule from the tokens. An in-depth review of those modules will be covered in 

subsequent sections. 

7.1 Lexer 

The term lexer stands for lexical analyser, but in practice no real analysis happens at this stage. Rather, 

it simply converts a raw human-written expression into a stream of machine-readable tokens that can 

be used by a parser. A token is a variable corresponding to an enumerated value, or enum. While 

Golang lacks a dedicated enum type, we are able to achieve the same result by creating a custom int 

type. The example below shows constants with automatically assigned sequential numeric values. 

// Token is a lexical token extracted from condition field 

type Token int 

 

const ( 
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    TokBegin Token = iota 

    TokIdentifier 

    TokSepLpar 

    TokSepRpar 

    TokKeywordAnd 

    TokKeywordOr 

  // omitted 

) 

Each subsequent value is automatically incremented by one. A token is then attached to a struct called 

Item, along with raw value extracted from condition. That value is used later for extracting pattern 

containers from the detection map. 

type Item struct { 

    T   Token 

    Val string 

} 

 

func (i Item) String() string { return i.Val } 

Generally, the lexer can be implemented in three ways. The first is to use a tool to generating one. Many 

exist that are well known and heavily adopted, such as Lexx, Rager, YACC and Bison. However, they 

would introduce undesirable dependencies to our otherwise lightweight and self-contained project and 

are known for having quite complex syntax. The resulting tokens would still need to be integrated into 

the match engine, so we would conserve effort by using one. The second option would be to rely on 

regular expressions. While a perfectly acceptable method, the Sigma condition format is not complex 

enough to warrant their use. Token extraction is relatively straightforward compared to rule tree parsing, 

as we simply need to scan non-whitespace characters and compare them against predefined values. In 

addition, Lexer does not need to function as a full validator, as the parser is responsible for 

contextualising the extracted tokens and ensuring their proper sequence. 

Instead, we chose the third option, which is implementing a custom lexical scanner. While seemingly 

the most difficult of the three, the actual process is quite straightforward and often used in the Go 

community, in no small part thanks to excellent presentation on lexical scanning by Rob Pike, one of 

the authors of Golang (Pike, 2011) and the large quantity of available resources inspired by that talk. A 

lexer type is a struct that contains the input expression, along with offsets for current cursor position and 

last extracted token. The start offset will be moved to the value of position whenever a new token is 

extracted. All tokens will be used to instantiate an Item which is sent to the items channel. The parser 

will collect those items, validate the sequence and construct an AST for a Sigma rule. 

type lexer struct { 

    input    string    // we'll store the string being parsed 

    start    int       // the position we started scanning 

    position int       // the current position of our scan 

    width    int       // we'll be using runes which can be double byte 

    items    chan Item // the channel we'll use to communicate between the lexer and the parser 

} 

 

func (l *lexer) scan() { 

    for fn := lexCondition; fn != nil; { 

        fn = fn(l) 

    } 

    close(l.items) 

} 
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A lexer is a state machine. It will loop over state functions depending on current input until the end of 

input is signified with a nil return type. Syntactically, this means a custom function type that takes a lexer 

as the input and returns another state function as a result. For example, if the scanner encounters the 

EOF symbol, it would return lexEOF function that collects everything from the last offset to the end of 

input and returns an empty value that breaks the function loop. 

type stateFn func(*lexer) stateFn 

 

func lexEOF(l *lexer) stateFn { 

    if l.position > l.start { 

        l.emit(checkKeyWord(l.collected())) 

    } 

    l.emit(TokLitEof) 

    return nil 

} 

Our condition scanner would consume characters one by one until a separator or whitespace is 

encountered. When whitespace is seen, it will call another state function that moves position offset back 

by one character and emits the collected token after identifying it. 

func lexAccumulateBeforeWhitespace(l *lexer) stateFn { 

    l.backup() 

    // emit any text we've accumulated. 

    if l.position > l.start { 

        l.emit(checkKeyWord(l.input[l.start:l.position]) 

    } 

    return lexWhitespace 

} 

The emit method is simply a helper that instantiates a new Item and sends the token with collected raw 

value to the parser. The function will then move our cursor to latest offset. 

func (l *lexer) emit(k Token) { 

    i := Item{T: k, Val: l.input[l.start:l.position]} 

    l.items <- i 

    l.start = l.position 

} 

After emitting the token, another state function is called that skips all whitespace characters until a non-

whitespace is found or input ends. Note that the latest offset will back up by one character once content 

is found. 

func lexWhitespace(l *lexer) stateFn { 

    for { 

        switch r := l.next(); { 

        case r == eof: 

            return lexEOF 

        case !unicode.IsSpace(r): 

            l.backup() 

            return lexCondition 

        default: 

            l.ignore() 

        } 

    } 

} 
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Overall, we expect to encounter the following token sequence in a typical Sigma rule: 

 

FIGURE 2: TOKEN SEQUENCES 

7.2 Parser 

The second stage in AST construction involves the actual parsing of tokens into a Tree object. Like most 

prior elements, the tree also implements Matcher and could be used interchangeably with its root 

branch. However, the user could also use the raw struct version with additional methods for statistics, 

updating, pre-filtering, etc. 

// Tree represents the full AST for a sigma rule 

type Tree struct { 

    Root Branch 

} 

The custom parser type would wrap around the lexer, but also holds collected tokens and stores the 

last seen item to verify the correct token sequence during collection. It also extracts individual pattern 
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containers from the detection map and parses them into leaf nodes if the identifier is encountered in the 

token stream. 

type parser struct { 

    lex       *lexer 

    tokens    []Item 

    previous  Item 

    sigma     Detection 

    result    Branch 

} 

The resulting Branch is stored in result element if no error occurs during the parse step or in prior token 

collection. Branch construction is done by a recursive function to handle nested conditions. 

func (p *parser) parse() error { 

    res, err := newBranch(p.sigma, p.tokens, 0) 

    if err != nil { 

        return err 

    } 

    p.result = res 

    return nil 

} 

Sigma rule expression is very small from a lexical standpoint and only needs to be done once during 

rule load and would need to do multiple passes over the token stream to extract nested expressions. 

Thus, the parser operates on a collected slice rather than a stream of items from the lexer channel. A 

channel is a language primitive in Golang to enable safe communication between workers, with 

semantics similar to pipes and sockets in UNIX-like operating systems, albeit in intra-process 

synchronisation rather than for inter-process communication. An arbitrary number of producers can send 

objects into a channel and an arbitrary number of consumers can read those items. An unbuffered 

channel blocks each send until something consumes the message from the other side, similar to the 

yield keyword in other programming languages. 

We could rely on the items channel in the lexer type, but that would make recursion difficult when dealing 

with nested expressions. The channel follows a first in first out (FIFO) logic and thus we are unable to 

back up or scan ahead when encountering a left paragraph token. Another approach would be simply 

to iterate over a slice while maintaining offset indices. Nested elements could then be extracted by their 

position within the array, while moving the offset forward or backward as needed. Alas, this approach 

makes the code unintuitive to read and prone to human error, as offsets need to be maintained manually 

by the programmer. Common problems are extracting too much or moving out of the array bounds. The 

former would be difficult to debug when working with recursive code, and the latter would result in 

runtime panic or crash as the compiler provides no protection against this bug, thus requiring more 

testing for the code. 

Our method combines these methods to create a third option. To do that, we created a helper which 

turns the token slice into a generator: 

func genItems(t []Item) <-chan Item { 

    tx := make(chan Item, 0) 

    go func(ctx context.Context) { 

        defer close(tx) 

        for _, item := range t { 

            tx <- item 

        } 

    }(context.TODO()) 
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    return tx 

} 

This function would create a new unbuffered channel and return after spawning a concurrent goroutine. 

An iterator sends items to the channel one by one and closes the channel once the asynchronous task 

returns, thus making the channel safe to loop over. The channel will not deadlock if all items are pulled 

by the consumer, though context could be used if timeout is needed. 

Our rule builder can then iterate over this channel with no need for offset management. We simply define 

modifier variables that can be set when special tokens are encountered. For example, encountering a 

NOT keyword would set negated Boolean and encountering an identifier would instantiate a new leaf 

matcher wrapped in NodeNot and reset the modifier. 

func newBranch(d Detection, t []Item, depth int) (Branch, error) { 

    rx := genItems(t) 

    and := make(NodeSimpleAnd, 0) 

    or := make(NodeSimpleOr, 0) 

    var negated bool 

    var wildcard Token 

    for item := range rx { 

        switch item.T { 

        case TokKeywordNot: 

            negated = true 

        case TokIdentifier: 

    // omitted 

Note that identifiers are always collected into NodeSimpleAnd containers which are in turn wrapped into 

NodeSimpleOr containers though the previously described Reduce() method and used to extract a 

single branch list or convert simple lists into binary tree objects. Likewise, encountering a “X of” keyword 

will simply set a modifier and extract multiple rule patterns in a subsequent wildcard pattern. Thus, the 

entire expression can almost be parsed in a single pass. Nested expressions will recursively invoke the 

same logic, albeit we need to do forward scan until the end of that nested group. 

case TokSepLpar: 

  // recursively create new branch and append to existing list 

  // then skip to next token after grouping 

  b, err := newBranch(d, extractGroup(rx), depth+1) 

  if err != nil { 

    return nil, err 

  } 

  and = append(and, newNodeNotIfNegated(b, negated)) 

  negated = false 

A helper function is used to collect all items that belong to the encountered group to construct another 

slice of Item types. For that purpose, we pass our receive channel to the function which will pull items 

while maintaining a balance counter. All child expressions are thus ignored, as they would be handled 

in recursion. 

func extractGroup(rx <-chan Item) []Item { 

    balance := 1 

    group := make([]Item, 0) 

    for item := range rx { 

        if balance > 0 { 

            group = append(group, item) 

        } 
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        switch item.T { 

        case TokSepLpar: 

            balance++ 

        case TokSepRpar: 

            balance-- 

            if balance == 0 { 

                return group[:len(group)-1] 

            } 

        default: 

        } 

    } 

    return group 

} 

The counter is initialised with pre-incremented value as the parent function has already encountered a 

left paragraph token. Likewise, the function will return all collected items except the last that would be a 

right paragraph token. The function expects the token sequence to be validated beforehand. 

Finally, the tree builder will collect the resulting matcher and return the rule object. 

    p := &parser{ 

        lex:       lex(expr), 

        sigma:     r.Detection, 

    } 

    if err := p.run(); err != nil { 

        return nil, err 

    } 

    t := &Tree{Root: p.result} 

    return t, nil 
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8. Performance measurements 

Golang has a built-in testing and benchmarking functionality. Our library already has several positive 

and negative test cases to validate matcher results, so reusing them for benchmarking was easy. Go 

tooling simply executes the same test case with predefined input and the number of test iterations is 

determined by tooling. The benchmark will simply be executed for a set amount of time and average 

operation throughput is reported at the end. 

BenchmarkTreePositive0-12         867567              1363 ns/op 

BenchmarkTreePositive1-12         862962              1494 ns/op 

BenchmarkTreePositive2-12         795531              1380 ns/op 

BenchmarkTreePositive3-12         854679              1393 ns/op 

BenchmarkTreePositive4-12         884188              1364 ns/op 

BenchmarkTreePositive5-12         809140              1390 ns/op 

BenchmarkTreePositive6-12         773706              1410 ns/op 

BenchmarkTreeNegative0-12         776173              1385 ns/op 

BenchmarkTreeNegative1-12         812887              1481 ns/op 

BenchmarkTreeNegative2-12         850477              1401 ns/op 

BenchmarkTreeNegative3-12         840723              1390 ns/op 

BenchmarkTreeNegative4-12         819126              1417 ns/op 

BenchmarkTreeNegative5-12         748514              1416 ns/op 

BenchmarkTreeNegative6-12         856683              1382 ns/op 

Initial results might seem impressive, but several factors can contribute to a more optimistic 

measurement than can be achieved in practice. Firstly, the test case measures only the Match method 

performance, whereas the raw JSON data is already pre-parsed. Secondly, the test cases are trivial, so 

map access times are also small. Finally, the built-in benchmark loops over deterministic input and 

output values. All modern processors do branch prediction and caching to optimise their performance 

and this benchmarking method is the perfect way to invoke those features. While any good 

benchmarking utility should clear the cache after each iteration to avoid this leak, we nevertheless 

decided to design our own measurements to verify the results in realistic use. We designed a small 

reference utility around our Sigma library with instrumentation to collect various measurements. This 

binary uses a fan-out worker model with goroutines and channels. Users can define the number of 

concurrent workers with a command line argument while a central statistics worker collects 

measurements from consumers and each individual worker and reports them periodically. A built-in 

timeout flag was used to stop the consumer after a user-defined amount of time. 

Our benchmarks were executed on Intel i7 8850H CPU with 6 cores and 12 logical threads. Windows 

events in ECS format that we collected during Crossed Swords 2020 were fed into our reference binary. 

Windows events are well known for their verbosity and large number of distinct fields and the Elastic 

schema only increases this field count while adding nested JSON substructures. Thus, we believe this 

accurately reflects a worst case use scenario. Tests were conducted at one-minute intervals and each 

iteration increased the number of concurrent worker routines. Each event was decoded into a 

DynamicMap object. The Golang standard JSON library is well known for being slow when handling 

dynamic nested structures as it relies on runtime-type reflection, thus we used a third party library 

compatible with standard library interfaces. The difference was noticeable, though not significant. Firstly, 

we established a baseline by measuring pure JSON decode throughput with no Sigma pattern matching. 
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FIGURE 3: DECODE THROUGHPUT 

Goroutines are not separate threads. Go binary spawns a configurable number of processes, defaulting 

to the number of available CPU threads and schedules goroutines inside them to achieve balanced 

system CPU use. We can observe this from Figure 3, as increasing the number of workers does not 

yield a linear performance gain. We can also see diminishing returns as the number of concurrent 

workers reaches the number of CPU cores. Effective logical core count is doubled thanks to 

hyperthreading which allows a single core to execute two tasks at once. However, this concurrency 

feature comes with a performance penalty, especially in a programming language with a built-in 

threading model where the user has no control over task scheduling. We can observe diminishing effects 

as the number of concurrent workers reaches that physical CPU count. We also experimented with 

worker counts higher than the number of available CPU threads. As expected, this only resulted in more 

context switches with no observable improvement in message throughput and, at times, even worse 

performance. The processor was busy switching between tasks whereas the actual work suffered and 

could have easily achieved the same results with less effort. 

Having established our baseline, we repeated the experiment with the Sigma engine enabled. We only 

used the Windows rules in the public Sigma ruleset. Some rules had multiple detection and logsource 

values separated by YAML document start delimiters. Those rules were split into separate rules in a 

pre-processing step. Some rules contained expressions that were not yet implemented in our Sigma 

engine and some were missing field mappings from standard Windows event log format to ECS. These 

still produced valid Sigma rule trees, but were clearly unable to match any events. Overall, it resulted in 

469 distinct rules that were appended to a slice. Each event traversed all rules and results, if present, 

were fed into a separate statistics worker. 
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FIGURE 4: MATCH THROUGHPUT 

We observed an average of 4.5 time-performance penalties when feeding each event through our 

engine, with similar per-worker performance gains and diminishing return patterns that we observed 

without using the Sigma engine. However, this was the result of traversing an entire rule list for each 

distinct event with no logsource pre-filtering. For example, a sysmon event would still be evaluated by 

rules written against security, firewall or powershell events, even when that rule would never match 

events from those channels. Thus, the effective ruleset size could be reduced significantly in practice; 

but over time, with new rules being introduced into the set, that benefit could be lost. 

To better contextualise these measurements against our initial measurements, two measurements were 

taken for each event. Firstly, the time spent, in nanoseconds, in decoding the JSON byte array into a 

DynamicMap object, and secondly, the time spent on processing that object with the 469 Sigma rules. 
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FIGURE 5: WALL CLOCK TIME PER OPERATION 

Figure 5 shows the wall clock times as they were taken internally from our application, rather than CPU 

time that was actually given to our process. The results get progressively worse by increasing the worker 

count because of competition for CPU clock cycles, so workers are constantly reshuffled between CPU 

cores, halting execution. Thread pinning could mitigate this efficiency loss if implemented in a lower 

level language, such as C or Rust. Thus, the efficiency loss is due to the chosen programming language 

and not to our implementation, as delta values between the two measurements remained consistent 

across all worker counts. We were observing the natural loss of worker efficiency for Go runtime. 

Nevertheless, the results are very promising when measuring individual rule performance. This can be 

estimated by simply dividing the average time taken for full ruleset evaluation by the total number of 

distinct rules. 
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FIGURE 6: WALL CLOCK AVERAGE NANOSECONDS PER RULE 

We initially assumed the built-in benchmark would overestimate the results, but this is not true. Average 

wall clock measurements were roughly 300 to 700 nanoseconds per rule when below maximum CPU 

core count and still remained below the initial 1,400 nanosecond measurement when going beyond that. 

However, the results flatten over a large number of measurements and most events never match a rule. 

Those negative matches could quickly yield a negative result and lower the average. 

We did another test to measure each rule execution time to gain a better understanding of overall 

distribution of these measurements and to see the performance difference between positive and 

negative results per percentile rank. Collecting measurements for each rule execution consumed a lot 

of memory and reduced the effective throughput of our application by half, as our one-minute test 

iteration generated 72 million profiling objects. The benchmark was thus conducted with only one 

worker, but we doubled the test duration. Other than maintaining the original throughput, this change 

was the maximum amount of measurements that we could collect in the memory on a system with 32GB 

of system RAM. While the negative match sample was sufficient, we discovered that a single test 

iteration only produced 30 to 100 positive matches with the XS 2020 log data, depending on the file. We 

collected all the positive matches from the 3-day exercise time frame to ensure a sufficient sample size. 

This produced 15,928 measurements. 
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FIGURE 7: MEASURED WALL CLOCK PER RULE PERCENTILES 

These results provide insights into realistic rule performance. Nearly 75% of rules yielding positive match 

were within our initial 1,400 nanosecond benchmark range, 95% of positive matches were within double 

that estimate and 99% were within 6,000 nanoseconds which is four times our initial benchmark. Few 

measurements exceeded 18,000 nanoseconds, but Sigma supports regular expressions and more than 

40,000 nanosecond execution time is normal for even simple regular expressions that use basic 

alterations assuming Go standard library, as other implementations could be more efficient. Thus, 

outliers were still in the acceptable performance range. 

By comparison, nearly 97% of negative matches were within our initial 1,400 nanosecond measurement 

range and 99% within double that estimate. We observed delta values between 2.1 and 3.6 between 

the percentile ranks for positive and negative matches, with a decreasing trend for subsequent ranks. 

The vast majority of negative results were achieved with little or no actual pattern matching, because 

the EventChecker interface is designed to indicate field presence. If a field defined in the Sigma rule is 

missing from the event, then Matcher will simply do an early return with a negative result, thus bypassing 

the expensive pattern operations. Therefore, most negative matches are operating at a highly optimised 

hash map lookup speed. Only a subset of negative results executes a partial pattern traversal and thus 

has a smaller performance gap compared to the positive results. 
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9. Discussion and future work 

The following sections discuss the key takeaways from the benchmarks and practical observations 

made during XS 2020. Some suggestions for future improvement are also proposed. 

9.1 Performance 

Overall, we found per-rule performance to be adequate, even with no tree optimisation. However, 

sequentially traversing the whole ruleset had a significant performance effect. Therefore, redesigning 

the ruleset object to implement proper pre-filtering with Sigma logsource field would likely yield the 

largest performance increase relative to effort needed for coding and testing. Our initial implementation 

during XS 2020 did that using a Golang map object where keys corresponded to our sources, such as 

Windows event log, Linux syslog, Suricata and Zeek. Values from the Sigma logsource field indicated 

which rulesets store individual rules, but no filtering was done after that. An interesting variation would 

be ruleset implementation as a binary search tree. Major performance loss was caused by lack of data 

sharing between individual objects, as each rule executed random access lookups individually, thus 

causing a large number of redundant operations. Even leaf nodes in a single rule can be affected by 

this limitation. A binary search tree implementation of the entire ruleset would drastically improve 

performance, as each event field should ideally be extracted only once. However, this would mean a 

complete redesign of our Sigma library and incur a fairly complex handling system. Both tasks were out 

of scope for our reference prototype. Simpler techniques like ensuring proper pre-filtering and 

rebalancing individual rules should be considered for future developments. 

A ruleset-centric approach would also be beneficial for improving the concurrency model. Our current 

approach is simple – independent workers consume messages from a global thread-safe channel and 

process rules sequentially. Each worker has a full copy of the entire ruleset and no state is shared 

between goroutines. Results and measurements can be handled locally or produced to another thread-

safe channel. In the second case, the results are picked up sequentially by a separate handler routine. 

Thus, we simply need to avoid passing any data structures via pointers to ensure thread safety. 

However, the Sigma rule format supports aggregations. For example, the user could define rules that 

only match if a pattern occurs in N log messages or when multiple events occur in a short space of time. 

These rules require common memory over sliding window and thus mandate data sharing between 

workers. Currently, we could only solve this problem by sharing a data structure that has a locking 

mechanism or by creating a separate set of aggregation workers that are communicated with using 

channels. While both solutions are perfectly valid, the former could easily cripple performance due to 

lock contention and the latter would add more worker routines that are difficult to schedule into our 

existing load-balancing model, thus overcomplicating it and causing potential deadlocks. Instead, the 

threading model could handle individual messages sequentially while parallelising the rule executions. 

This would maintain the original message ordering and could prove to be a better platform for creating 

state sharing across multiple events. Ensuring that this state sharing is designed into our load balancing 

model also increases code maintainability. 

9.2 Post-processing the matched events 

Post-processing and visualisation of matched events is not directly part of this work, but still provides a 

valuable perspective. We employed several methods for improving the detection quality of our Sigma 

engine during XS 2020. The post-processing of events was performed by a Python script that consumed 

the stream of events from Apache Kafka, whereas our central logging tool with Sigma functionality was 
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omitting those high-priority messages. Filtered output was sent directly to our dashboards. Dashboard 

functionality for red-team feedback was provided by Alerta. 

The script parsed JSON formatted events that were already enriched with exercise-specific metadata. 

Even though the events were structured and mostly processed, we still applied minor normalisation for 

consistency before transfer to the red team dashboard. However, this step was not performed on original 

message, but rather on the enriched metadata attached to the event. Essentially, the event already had 

information on the affected asset, its IP addresses and network zones, Sigma rule matches and event 

IDs that were mapped to the MITRE ATT&CK enterprise killchain matrix. However, not all fields could 

always be reliably added by the central engine, so event post-processing functions had to handle these 

situations, sometimes just dropping the event if there was not enough information for it to be displayed 

on the dashboard. 

One primary step of the post-processing was dealing with the MITRE ATT&CK framework information 

that was attached to omitted events. We used the information the framework (e.g., phases, techniques 

and descriptions) contained to standardise everything directed to the dashboard and established an 

effective baseline to filter periodic low-priority events that were triggered in the target systems before 

the red team had started its activities. There was another simple filter in place for manually filtering non-

interesting events to avoid displaying them on the dashboard. Compiling such filters is normal during 

real-world use because alerts always need to be contextualised against normal system patterns. The 

same alert could indicate malicious activity in one environment, yet be triggered by regular benign use 

patterns in another. 

There is definitely room for improvement, but solutions described in this paper were a significant step 

compared to past exercise iterations. Coming back to the initial discussion on the inefficient use of event 

correlation, we previously had a substantial number of manually described events which resulted in a 

disorderly and confusing output for the target audience. We foresee that work conducted in XS 2020 

has served as the foundation for developing a proper event correlation ruleset that relies on standardised 

killchain anchors, rather than having to handle every possible raw atomic message produced by our 

sensors or target systems. Event correlation is a form of data science whereas understanding atomic 

security events requires expertise from a particular security domain. Separating those roles enables 

those domain experts to easily contribute event translations in an easily expressed format that is Sigma, 

so data scientists can focus on analysing inter-event relationships to detect attack campaigns. 
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10. Conclusion 

Log management and signature-based threat detection have been security operation cornerstones for 

decades, but using both has historically meant heavyweight SIEM deployment. The Sigma project has 

emerged in recent years to create a common vendor-agnostic rule language and public community 

ruleset for security monitoring. However, it is still missing real-time IDS capability, something that has 

long been the norm for network security. Relying on log management solutions or SIEM systems is not 

always ideal, for example in cyber exercises or security research. 

This paper presents a novel real-time pattern matching engine that functions as an IDS for logs. It was 

initially implemented as an experimental Golang library for use in the Crossed Swords 2020 yellow team 

logging engine. Since then it has been rewritten to serve as a reference for anyone interested in 

integrating real-time detection capability into their logging stream. 

As Sigma is a loose rule language that has evolved naturally in real-world use, we firstly analysed 

existing rule expressions and condition constructs in the public Sigma repository. We then proceeded 

to define a common interface that users should implement to extract fields defined in the Sigma rules. 

A rule object was then constructed as polymorphic tree where each node adhered to common Boolean 

match gateway. We described our method for lexically analysing and parsing the Sigma rule condition 

into that tree object, along with pre- and post-processing steps we took to handle issues that were not 

yet managed within the engine. Finally, extensive performance testing was done to study the 

performance characteristics of our current implementation and to identify needed developments. 

Overall, individual rules performed relatively well, even in their current unoptimised form. However, the 

ruleset as a whole can be developed to eliminate redundant operations. Finally, our chosen 

programming language proved to be a good choice for prototype implementation. However, high 

throughput production implementation should consider systems programming languages that provide 

more control over thread scheduling. 
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