Android Dumpsys Analysis to Indicate Driver Distraction

Lukas Bortnik!, Arturs Lavrenovs'

I'NATO Cooperative Cyber Defence Centre of Excellence,
Filtri Tee 12, 10132 Tallinn, Estonia
{lukas.bortnik, arturs.lavrenovs}@ccdcoe.org

Abstract. Police officers investigating car accidents have to consider the driver’s
interaction with a mobile device as a possible cause. The most common activities
such as calling or texting can be identified directly via the user interface or from
the traffic metadata acquired from the Internet Service Provider (ISP). However,
‘offline activities’, such as a simple home button touch to wake up the screen, are
invisible to the ISP and leave no trace at the user interface. A possible way to
detect this type of activity could be analysis of system level data. However, se-
curity countermeasures may limit the scope of the acquired artefacts.

This paper introduces a non-intrusive analysis method which will extend the
range of known techniques to determine a possible cause of driver distraction.
All Android dumpsys services are examined to identify the scope of evidence
providers which can assist investigators in identifying the driver’s intentional in-
teraction with the smartphone. The study demonstrates that it is possible to iden-
tify a driver’s activities without access to their personal content. The paper pro-
poses a minimum set of requirements to construct a timeline of events which can
clarify the accident circumstances. The analysis includes online activities such as
interaction with social media, calling, texting, and offline activities such as user
authentication, browsing the media, taking pictures, etc. The applicability of the
method are demonstrated in a synthetic case study.

Keywords: digital evidence, mobile forensics, car accident, driver’s distraction,
Android dumpsys

1 Introduction

The scope of digital evidence is growing in parallel with minor improvements and
newly added functionalities in mobile devices. In general, newly introduced operating
system (OS) upgrades are targeted to improve the security and ergonomics of the mo-
bile devices. While security upgrades challenge the investigator’s ability to acquire de-
tailed digital evidence, the opposite is the case when enhancing the usability of the
system: an improved user environment requires integrating new hardware and software
components, which results in new streams of evidence ready to be investigated by fo-
rensic practitioners.

In comparison to traditional host-based digital forensic techniques, mobile forensic
solutions must consider a range of different mobile-device specific requirements.
Firstly, mobile device data is highly volatile. Some evidence will simply not survive

until the police arrive at the accident. Some can be intentionally or unintentionally and
irreversibly destroyed by the user. Secondly, evidence acquisition is another challenge.
Taking into consideration the usual methods of accident investigation, it is unclear how,
if at all, the data from the mobile devices can be acquired. Depending on the brand,
model, operating system, version and patch level, the scope to successfully acquire data
varies significantly. The data available through the user interface (UI) might reveal the
most common activities such as telephony or texting, but offline activities such as wak-
ing the screen would remain undetected. Even though data from lower architecture lay-
ers may deliver further clarity, current mobile phone forensic analysis solutions are
simply not designed to reflect specific accident-related cases. For instance, login activ-
ities or an attempt to reply to an incoming message can easily lead to driver distraction,
but whether this type of activity can be detected by current state-of-the-art solutions is
questionable.

Android Operating System (AOS) devices are equipped with an interactive interface
to observe user and system activities. Users and developers can inspect application and
system behaviour through built-in functionalities such as a circular buffer log (logca?),
the dumpsys tool or bugreports. These functionalities allow access to the portion of the
data which is normally not visible from the standard UI. Although the ability to ‘abuse’
mobile phone diagnostic data for forensic purposes has been known for almost a dec-
ade, analysis of Android dumpsys diagnostic data seems to have been overlooked. In
comparison to traditional smartphone digital forensic techniques, which are primarily
focused on content analysis, the analysis of diagnostic data has received only limited
research attention [1] [2]. A significant gap has been identified in terms of acquisition,
analysis and the interpretation of the artefacts of android dumpsys analytical data.

Hence, the primary motivation for this study is to inspect the current state of Android
dumpsys diagnostic data, identify artefacts which reflect specific driver activities, in-
spect their relevance and volatility, and demonstrate the applicability of the proposed
method in a real-life investigation.

Besides the ability to avoid analysis of the user’s personal data, the study explains
how to extend the scope of prospective evidence providers and how to identify drivers’
activities without the need to collect the data from ISPs. The study also demonstrates
the possibility of determining those driver activities which are outside the analysis ca-
pabilities of currently available digital forensic solutions. The outcome of the study
extends the perception of prospective digital forensic evidence, clarifying the circum-
stances leading to car accidents; and allow investigators to conduct more time- and cost-
effective investigation.

The remainder of this paper is structured as follows: Section 2 reviews related work.
Section 3 overviews the methodology and limitations of current work. Section 4 focuses
on core Android dumpsys services, which are the most relevant to determine driver
activities. Section 5 demonstrates the effectiveness of the proposed approach in a syn-
thetic case study. The conclusions and future work are discussed in Sections 6 and 7.

2 Related Work

The detection of driver distraction has received substantial attention in academia over
the last decade. A significant portion of research has focused on how to detect driver
distraction based on sensorial data, collected either from a smartphone or vehicle sys-
tems. The majority of the solutions propose to collect the data via custom applications
or additional hardware installed in the vehicle. Mantouka et al. [3] attempted to identify
driving styles (including distracted driving) based on data from gyroscope, accelerom-
eter and GPS records. In addition to the previous, Papadimitriou et al. [4] added data
from a magnetometer. The data collected is temporarily stored within the device itself
and eventually uploaded to the cloud-based back-end and analysed. Concerning pri-
vacy, Mansor et al. [5] proposed a mechanism for secure vehicular data storage and
cloud synchronization using a custom protocol, which complies with forensically sound
evidence collection requirements.

Another perspective leverages a vehicle’s built-in system. Khandakar et al. [6]
demonstrated a portable solution to collect vehicular data from a 3-DOF accelerometer
and ECU over the OBD-II port. This data is then sent to a mobile device for further
analyses and to conduct autonomous decisions such as reducing speed. Khan et. al [7]
presented the effect of smartphone activities on driving performance recorded in a ve-
hicular lifelog, which could help to detect distracted driving.

A substantial amount of research has been dedicated to solutions that can differenti-
ate between use of a phone by a driver or a passenger. Park et al. [8] studied typical
driver activities, e.g. opening vehicle doors; Torres et al. [9] focused on reading text
messages; Yang et al. [10] proposed advantages that could be gained from using a ve-
hicle’s speakers; Hald et al. [11], Liu et al. [12] and Manini and Sabatini [13] made
strides in terms of differentiating between driver and passenger activities based on sen-
sorial data from wearables. Lu et al. [14] analysed sensorial data to detect current driv-
ing activity and vehicle type (car, motorbike, bicycle or travelling on foot). These, and
other detection techniques, were implemented in mobile applications which should dis-
courage drivers from dangerous interactions with mobile phones [15].

Mobile phone diagnostic data has been used relatively little in research into driver
distraction. Horsman and Conniss [1] analysed two major mobile operating systems,
showing the most promising sources of digital evidence that could help investigators to
indicate driver distraction. The study focused on artefacts that can reveal human inter-
action with a mobile device acquired from two primary internal evidence providers:
Android’s circular buffer log and iPhone’s CurrentPowerlog.powerlogsystem file. The
study provides several options how to identify the most probable activities such as in-
teracting with social media, texting and calling, either directly from the mobile device
or using hands-free equipment. Researchers described possible challenges to acquiring
and analysing the logcat dump. Apart from the now obsolete operating system versions
(AOS 4.3 (JellyBean) and 4.4 (KitKat)), the main drawback of the proposed solution
was the extremely high volatility of the evidence. If the first responders did not react
within a few minutes of the accident, the content of the buffer log might be overwritten
and the evidence permanently lost. Similarly, the vast majority of the circular buffer

log content would become unavailable after the device was rebooted. In addition, au-
thors did not consider the dumpsys diagnostic data, which may indicate human interac-
tion the best.

The dumpsys output data is not completely unknown to researchers either. However,
recent research has been oriented mostly towards malware detection and malware clas-
sification techniques. Ferrante et al. [16] proposed a malware detection method, which,
among other aspects, processes CPU and memory usage data acquired via dumpsys to
identify which sub-parts of the executed application are malicious. Memory consump-
tion data, application permissions, battery usage and network statistics collected via
dumpsys were proposed by Lashkari et al. [17] as an additional type of feature to de-
velop more comprehensive Android malware detection framework. Trivedi et al. [18]
found that dumpsys package data helps with the correct application of a UID to appli-
cation name resolution in a technique that identifies applications accessing malicious
URLs.

Despite the fact that dumpsys offers powerful analytical options, it has not been uti-
lised as a feature by many known malware datasets [19]. Dumpsys diagnostic data has
also been found to be useful in other areas. Shoaib et al. [20] used dumpsys data to
analyse how the recognition of human activity impacts resource consumpation in smart
devices. Dumpsys CPU statistics were included into the examination datasets to iden-
tify Ul performance regressions in Android applications [21] and to identify the impact
of logger-augumented mobile banking application on power consumption [22]. How-
ever, these implementations have only limited forensic value in terms of indicating
driver distraction.

3 Analysis Background and Methodology

3.1 Introduction to Android Dumpsys

The primary purpose of the dumpsys tool is to allow developers to inspect diagnostic
data generated by system services' such as process statistics, CPU consumption, net-
work usage and battery behaviour. As with any other operating system, much of the
analytical data generated by system services, installed applications or telemetry func-
tions is not designed for digital forensic purposes. The same applies for Android devices
and their system services. The primary drawback is that only a limited number of sub-
ject-relevant system events are time-stamped. Moreover, system services do not neces-
sarily generate diagnostic events with a unified timestamp format. The time value might
be expressed in epoch time, it may follow system time, or it may be expressed as a dif-
ferential value, e.g. the number of seconds since the application was pushed to the back-
stack until the dumpsys tool was executed. The time resolution of each set of events
may also vary from milliseconds to minutes. Even if some diagnostic data does survive
a system reboot, particular content was shown to be eventually overwritten, either due
to user interaction or just after regular system runtime. The lifetime of the events kept

I Authors in [23] use the term ‘service’ as a dumpsys option to specify the output from particular dumpsys plugins.

by particular system services may also vary from seconds to months, regardless of
whether or not the device is rebooted.

One of the main advantages of dumpsys data acquisition is that the command can
operate under user level privileges. Meaning, the acquisition process does not require
elevation to the root-level access, but rather the standard ADB shell. If the minimal set
of requirements® is met, full diagnostic output can be acquired by the ADB shell
dumpsys command without setting any additional arguments. Diagnostic information
will be extracted from all supported services. The scope of the supported system ser-
vices and the format of diagnostic data differ based on the installed platform. For in-
stance, the primary tested model Samsung Galaxy S9, SM-G960F/DSA running on An-
droid 8.0 supports 225 different services, while Samsung Galaxy S3 (AOS 7.0) supports
189 services and Samsung Galaxy S5 (A0S 5.0) altogether 196 services. Dumping all
services may, however, produce quite verbose output in which not all events are valu-
able for forensic purposes.

3.2 Evidence Identification

The diagnostic data from a single service may contain either data from a related service
or the aggregated data from multiple services. Since the output is highly verbose, the
initial objective is to limit the scope of targeted services and exclude irrelevant diag-
nostic content. As the dumpsys services do not generate diagnostic data in a unified
structure, the examination requires separate per-service data acquisition. Each dumpsys
service is triggered and the output is manually examined. Since the intention is to con-
struct a timeline dataset, the first filtering criterion requires the presence of time infor-
mation. Should the service generate information (an event) without a timestamp, the
service (the artefact) is excluded from further observation (see Fig. 1).

The next criterion inspects subject-relevant content which would reflect the driver’s
intentional interaction. The diagnostic data is categorised based on relevance to the in-
vestigation subject. As case-relevant data is essentially an event which reflects direct
or indirect driver interaction; for instance, waking up the screen, unlocking the device,
charging, changing settings, opening an application and switching between applica-
tions. Irrelevant content can be considered the portion of the diagnostic data which is
not generated as a response to the driver’s intentional interaction or that does not cor-
respond to driver activity; for instance, an event which reports the volume of currently
consumed memory or CPU is irrelevant.

2 Steps to enable the ADB shell varies depending on the installed AOS [41].

for i in {1..x} services

ADB DUMPSYS SERVICE OUTPUT
accquistion inspection
J\ VERIFICATION
4N

/" \
Service (artefact) NO /" Has N
excluded \timestamp?,/
4
N/

Y CONDITIONAL
YES ACQUISITION TESTING

FILTERING
(clean-up)

Cross-platform

VOLATILITY
testing

NO YES User's
interaction CORRELATION
(trigger)

7277
ARTEFACT(s)
‘ Buffer

Fig. 1. Analyses process

Is
RELIABLE?

Lastly, events which are not certainly irrelevant nor definitely attributed to the
driver’s intentional activity are examined and correlated in the context of all other
events; for example, a diagnostic output from WiFiController could be irrelevant, but
it tracks and logs activities such as screen on/off or user login, and so might be relevant.

The next stage requires empirical examination to identify under what conditions each
individual event is or is not generated. To exclude a portion of uncertainty, the obser-
vation also considers whether the event can be generated without any user interaction.
The scope of the tests is customised for each artefact being explored. For instance, te-
lephony activities are examined separately for a phone call which is conducted through
the built-in earpiece, through the Bluetooth-connected car speaker or through a wired
external handset. The behaviour is then observed for situations when the phone call is
accepted, rejected or ignored. The full set of the conducted tests is outside the scope of
this paper.

The output of this stage results in a set of triggers which can be responsible for gen-
erating each individual event. Following the principle of evidence reliability, each event
is repeatedly invoked by the set of discovered triggers. Should the event be generated
after a defined set of triggers is executed, the event is considered to be reliable. Any
deviation from the expected output marks the event as unreliable and the event is ex-
cluded from the final timeline dataset.

Another examination criterion is the volatility of the event. The primary volatility
test shows whether the event survives system reboot. If it does, the next stage is to
determine the condition under which the event persists. The events might be erased
after a particular buffer has been reached or if the user triggers a certain activity (e.g.
the application is closed). The buffer might be defined by the maximum size of the log,
by the number of events being stored within one log, or by the expiration time.

A preliminary examination returned a list of services in which the diagnostic data
can be sufficient to indicate the driver’s interaction with the mobile device. The list

consists of 8 out of 225 supported services: activity, bluetooth_manager, mount, sta-
tusbar, telecom, customfrequencymanagerservice, wifi, and usagestat. A brief sum-
mary from the examination of each individual service is described in section 4.

3.3 Post-acquisition Stage

The post-acquisition stage filters unnecessary content and unifies the event structure to
build the timeline. First, the timestamp format across all accepted events is converted
to the unified format. However, if multiple same-source events are generated within the
same minute (which often is the case), all of them will have the same timestamp. Con-
sequently, the analyst may unintentionally break the relationship between individual
events which might result in misinterpretation of the user’s activities. To maintain the
integrity of the timeline, the order of the generated events has to be preserved. For the
purpose of this analysis, events which are not timestamped with at least one-second
resolution were tagged by an ORDER number which maintains the order of events in
which they initially were generated.

All extracted events are delimited into three fields: DATE; TIME and MESSAGE
body. To enhance the usability and simplify further filtering, each individual event is
enriched with additional fields: SOURCE, CLASS, EVENT _TYPE and DESCRIPTION.
The SOURCE tag equates to the origin; that is to say, the name of the service which
generates the event, e.g. wifi or telecom. The CLASS defines the specific application’s
class. For instance, the wifi service generates diagnostic output from but not limited to
the following classes: WifiStateMachine, AutoWifiController, WifiController and Wifi-
ConnectivityMonitor. EVENT _TYPE and DESCRIPTION tags were constructed based
on observation, researched theory and the contextual meaning. EVENT TYPE refers to
the group of same type events, regardless of which service or class generates a particu-
lar event. A good example is a login activity event type which refers to the user’s login
and logout events. The login activity event type aggregates the events from wifi, mount
and statusbar services (see Table 1).

Table 1. Event types produced from individual dumpsys services

EVENT_TYPE SOURCE (dumpsys service)

app activity usagestats, CustomFregencyManagerService

BT activity bluetooth_manager, CustomFregencyManagerService
call activity telecom, statusbar, CustomFregencyManagerService
charging activity CustomFregencyManagerService

login activity wifi, mount, statusbar

screen activity wifi, CustomFregencyManagerService

task activity activity,

wifi activity CustomFregencyManagerService

The ‘DESCRIPTION’ field clarifies the meaning of the message body and the activity
type with greater granularity. For instance, the screen activity distinguishes screen on
and screen off events, and the call activity recognises call started/ended. Events for
which their meaning is unclear were tagged as unknown (-) (see Table 2).

Table 2. Event type descriptions

EVENT TYPE DESCRIPTION
app activity app launched; app moved to background; app moved to fore-
ground; lastTime executed; (-)

BT activity BT AUDIO connected; BT device connected; BT device disconnected;
BT entered AUDIO; BT entered NORMAL; BT paired device; call an-
swered; audio route; (-)

call activity call ended; call started; (-)

charging activity charging OFF, charging ON

login activity Ul locked; Ul unlocked; login detected; pwtype requested; pwtype
confirmed; unlock requested; unlock confirmed;

screen activity screen OFF; screen ON

task activity app exited

wifi activity WiFi OFF; WiFi ON

Consequently, each case-relevant event extracted from dumpsys diagnostic output
appears in the timeline in a unified structure (see Fig. 2).

DATE: 04/27/19;

TIME: 13:17:11.253

ORDER: (-);

SOURCE: wifi;

CLASS: WiFiConnectivityMonitor;

EVENT_TYPE: screen activity;

DESCRIPTION: screen OFF;

MESSAGE: processed=DefaultState org=NotConnectedState
dest=<null> what=135177(0x21009) (75938.065)
EVENT_SCREEN_OFF 0 0

Fig. 2. An example of event with unified structure

34 Limitations

The primary limitation is the rapid development of the Android operating system and
the application packages, which might invalidate certain results over the period of anal-
ysis. Significant changes have already been introduced in AOS 9 and 10. A considera-
ble limitation is the scope of explored devices and installed operating systems. The
research results might be limited to device-specific hardware and installed versions of
the OS. Lastly, neither official resources [23] [24] nor Android project source code [25]
revealed sufficient documentation to support the research results. The research out-
comes are therefore highly depended on empirical examination supported by limited
documentation.

4 Core Dumpsys Services to Indicate Driver Distraction

4.1 Application Activities

Activity manager is the Android built-in class available from API level 1 which inter-
acts and provides the diagnostic data about running processes, services and their activ-
ities. The Activity command supports extended operation switches to limit the observa-
tion to a specific package, service or broadcast delivery.

For the purpose of this research, the analysis of the Activity manager output was
limited to the Recent Tasks section. The data in the Recent Tasks dump provides gran-
ular information about tasks that the user has most recently started or visited [26]. Au-
thors in [27] define a task as ‘a collection of activities that users interact with when
performing a certain job’. All activities are arranged into a stack. If the user opens
a new activity within the application, older activities are sent to the back-stack. Once
the user exits the activity, the activity from the top of the back-stack will be retained
with the configuration it contained before being sent to the back-stack. Task configura-
tion holds details such as finger touch position, scroll position or even bar colours. Each
record in the stack holds the time when the task had been last active (lastActiveTime).3

Tasks are accompanied by Intent [28] [29]. By default, Intent’s structure consists of
primary attributes as Action and Data. Action and Data are paired to define a specific
action, e.g. ‘ACTION VIEW content://contacts /people/l’. The secondary attributes
such as category, component and type define expected action more specifically. For
instance, the category.Launcher (cat) orders the application to start on top of all cur-
rently running applications. Component (cmp) defines an explicit name of the compo-
nent to be executed, e.g. to start user login interface in Revolut app would be defined
as com.revolut.revolut/com.revolut.ui.login.pin.LoginActivity. Further explanation of
these attributes is beyond the scope of this paper.

Once the task is resumed, the combination of individual definitions (act, cat, cmp)
and others orders the system to resume the exact configuration as the application had
before it was pushed to the background. Meaning, retained tasks give the investigator
the ability to recover identical situations which the user had faced in the past.

The activities within the Recent Task dump are listed from the most recent at the top
of the list. The number of tasks running in the background relies on hardware configu-
ration. If the user runs many background tasks at the same time, the system might start
destroying them in order to recover memory. Even though the Recent tasks memory is
reboot-resilient, the evidence can be irreversibly destroyed if the user (or the investiga-
tor) closes all running applications. The back-stack will be freed without the ability to
recover any past activities. While examining the test device, it was possible to recover
32 tasks from last 22 hours of user activities.

3 The Recent task dump also allows to attribute past activities to a specific user (EffectiveUiD).

10

4.2 Application Usage Statistics

Application use statistics can be acquired from dumpsys UsageStats service, available
for developers from API level 21. The statistics are collected for a package for a specific
time range [30]. Data is stored separately for packages which are in the foreground or
background of UI, or for packages which are idle for a specific time interval. The output
can be divided into the following three categories:

1. In-memory statistics;
2. Event type collector statistics; and
3. Package idle statistics.

The In-memory statistics (stats) are aggregated into certain periods — day, week, month
and year. However, regardless of the length of the aggregation period, the aggregated
output of in-memory stats does not have to contain statistics through the whole aggre-
gation interval. In fact, the data is collected within a system-defined time range
(timeRange). For instance, In-memory daily stats may be limited to application use sta-
tistics over the last several hours, ‘weekly stats’ to last several days, etc. While the start
time of timeRange is system-defined, the end time equals the time of dumpsys acquisi-
tion.

Each aggregation period contains usage statistics for each individual package which
was executed on the system over the defined timeRange. The totalTime is measured
over the same period of time. The investigator may conclude that during the time inter-
val (timeRange), the user had been using a particular application (package) for a spe-
cific amount of time (totalTime). The lastTime refers to the time of the last user inter-
action (see Fig. 3).

user=0
In-memory daily stats
timeRange="4/26/2019, 20:36 — 4/27/2019, 14:07"
packages
package=com.whatsapp totalTime="00:30" lastTime="4/26/2019, 20:59"
package=com.waze totalTime="04:59" lastTime="4/27/2019, 13:23"
<<output omitted>>

Fig. 3. Usagestats — An example of In-memory daily stats output

Furthermore, each time the application is called, the Event type collector denotes
that the activity moved to the foreground or to the background and the time, application
name and associated activity type are recorded. If the user pushes the application to the
background, UsageEvents.Event object will generate a MOVE TO BACKGROUND
event. If the user calls the application to the foreground, the UsageEvents. Event object

11

will generate MOVE TO FOREGROUND event.* If the application consists of multi-
ple activities, a separate event will be generated for each individual activity [31] (see
Fig. 4).

<<output omitted>>
time="4/27/2019, 22:58" type=MOVE_TO_BACKGROUND package=com.google.android.gm
class=com.google.android.gm.ui.MailActivityGmail
time="4/27/2019, 22:59" type=MOVE_TO_FOREGROUND package=com.google.android.gm
class=com.google.android.gm.ComposeActivityGmail

<<output omitted>>

Fig. 4. Usagestats — An example of Event type collector statistics

UsageEvents. Event object also reports the class which refers to a specific activity
within the application. For instance, if a driver attempts to compose a new email, a new
set of events with updated class definition will be generated (+ComposeActivityGmail)
(see Fig. 4).

Although In-memory statistics and Event type collector events are logged only with
a 1-minute resolution’®, the investigator may still define the last execution time more
precisely. An additional indication about the driver’s interaction with the mobile device
can be derived from Package idle stats which count the time since the application was
last used. In comparison to the previous Usagestats categories, Package idle stats do
not keep the history of the application usage, but only the most recent record per appli-
cation. If the application or its internal activity is either executed or pushed to the back-
ground or to the foreground of the UI, the lastUsedElapsed counter will be restarted.
While the lastUsedElapsed counter counts the time since the application was last used,
the lastUsedScreenOn counter counts the time during which the screen is on (see Fig.
5).

<<output omitted>>
package=com.facebook.orca lastUsedElapsed=+1h10m45s946ms lastUsedScreenOn=+7m0s774ms idle=n
package=com.whatsapp lastUsedElapsed=+4m2s943ms lastUsedScreenOn=+1m0s491ms idle=n

<<output omitted>>

Fig. 5. Usagestats — An example of Package idle statistics

4.3 WiFi Analytics and Screen Activities

ADB dumpsys offers several options to inspect WiFi behaviour, connectivity, configu-
ration and statistics. The tested device supported five dumpsys services: wifi, wifip2p,

4 As of API level Q (29), the ‘MOVE_TO_’ event types were deprecated and replaced by constants ACTIVITY_PAUSED and
ACTIVITY_RESUMED [31].

5 Asof API level 28, events are generated with 1 second resolution.

12

wifi_policy, wificond and wifiscanner. Due to extensive output, further explanation will
be limited to wifi service, which may best clarify the driver’s activities.

Firstly, one may wonder why there is a need to inspect WiFi behaviour if the driver
is most likely not connected to any WiFi network while driving the car. It is because
selected classes keep tracking system activities and therefore the driver’s behaviour.®
For instance, any time a driver switches the screen on or off, the screen state change is
reported. Screen state changes can be observed through multiple classes, primarily:
WifiController, WifiStateMachine, WifiConnectivityMonitor and AutoWifiController.
The change of screen state can be recognised in the body of the message instantly (as
‘screen on’ or ‘EVENT SCREEN ON’) or it may require further decoding, as is the
case for the WifiController class.

Individual classes report system changes the WiFiManager, which acts as a primary
API for managing all aspects of WiFi connectivity [32]. Reported events contain so-
called msg.what codes which serve primary API to identify the type of received mes-
sage. Messages are constructed as a sum of the Message.what BASE message address
and the class’s specific state address. Message.what BASE message address is declared
as a public static final integer [33], e.g. WifiController’s BASE message address is
0x00026000 (155648). The class’s specific state addresses are defined in each individ-
ual class’s source code. For instance, WifiController declares the screen on state as
BASE+2 and screen off as BASE+3 [34] thus reporting the change of the screen state
as msg.what=155650 for screen on and 155651 for screen off (see Fig. 6). The same
principle is applied for all supported classes which use ‘msg.what’ codes.

<<output omitted>>
rec[2]: time=04-27 13:23:11.811 processed=DefaultState org=DeviceActiveState dest=<null>
what=155651(0x26003)
rec[3]: time=04-27 13:23:15.650 processed=DefaultState org=DeviceActiveState dest=<null>
what=155650(0x26002)
<<output omitted>>

Fig. 6. Wifi - WifiController screen activity

The primary drawback, however, is that the vast majority of dumpsys wifi service
diagnostic content does not survive system reboot. The lifespan of each individual class
also varies. While testing, the WifiController and WifiStateMachine classes held diag-
nostic data from the last 2 hours, AutoWifiController for approximately 10 hours, and
WifiConnectivityMonitor and WifiConnectivityManager for up to 36 hours.

4.4 Login Activities

The user’s login activities can be perceived as the artefact which would indicate the
driver’s activity the best, but retrieving it is a considerable challenge. Android dumpsys

© The statement does not apply if the device is set to airplane mode.

13

output holds only fragmented and, in most cases, indirect evidence of user login activ-
ities, if anything. While logout activity can be indirectly attributed to screen off events,
this is not necessarily true of login activity. Given that the screen may be woken up
without any user interaction, screen on events by themselves are insufficient to indicate
that the driver logged in. Nevertheless, the investigation revealed several options for
how to detect login activities indirectly.

A driver’s login activity can be determined from WiFiManager statistics, the Wifi-
Controller class specifically. Applying the decoding approach described in the previous
section, the investigator may identify login activities tagged as what=155660(0x2600c)
messages. The value is constructed as a sum of WifiController’s base message address
‘0x00026000 (155648)° and USER PRESENT state address (712). Regardless of
whether the WiFi module is enabled or not, and regardless of what authentication
method is used, WifiController reliably reported all user logins (see Fig. 7).

<<output omitted>>
rec[173]: time=05-04 20:42:27.884 processed=DefaultState org=StaDisabledWithScanState
dest=<null> what=155660(0x2600c)
rec[176]: time=05-04 20:43:46.186 processed=DefaultState org=StaDisabledWithScanState
dest=<null> what=155651(0x26003
<<output omitted>>

Fig. 7. Wifi - User’s login activity

Another indirect source of the prospective login artefacts is the Android disk encryp-
tion subroutine. Each time the user changes or provides credentials to unlock the UI,
the crypfis connector is initiated which is accordingly reflected in system events.
Cryptfs connector activities (if FDE is present) can be obtained from dumpsys mount
service. The main benefit is that behaviour is reliable and the log may trace login events
over several hours. The tested device held logins from the last 7 hours. However, if the
user uses fingerprint or face recognition, the log is not generated. Lastly, cryptfs events
are not reboot resilient.

A partial solution to this problem can be retrieved from statusbar manager service
logs. Android processes can call a routine in another process using a binder to identify
the method to invoke and pass the arguments between processes [35] [36] [37]. The
same mechanism is used to maintain binder tokens which are shared between Notifica-
tion and StatusBar managers. Depending on the installed version of the OS, Android
processes may communicate with others via native binder object — the /Binder — or via
proxy — the BinderProxy.java [38].

Token activities can be acquired by the adb shell dumpsys statusbar command.
Among other triggers, each time the user logs into the device, statusbar manager gen-
erates the what=CLEAR event. If the user or the system itself locks the user interface
out, a secondary event what=HOME RECENT is generated. The events are ordered by
time, with the most recent at the bottom of the list. The list holds up to 100 events. The
primary drawback of this artefact is that the associated timestamps do not hold the date,

14

just the time with millisecond resolution. The second downside is that the artefact is
not reboot resilient. Regardless of what security measure is applied (PIN, pattern, fin-
gerprint or face recognition), the events are reliably recorded.

4.5 Telephony Activities

Android dumpsys telecom service generates a list of recently conducted phone calls.
Each call log contains call direction, the startTime and the endTime of the phone call.
For each direction, the callTerminationReason is defined by DisconnectCause attrib-
utes, the Code and the Reason. These attributes show whether the phone call was
missed, rejected, or ended by a caller or by the counterpart. Depending on used tech-
nology, felecom shows individual audio states. ‘Each state is a combination of one of
the four audio routes (earpiece, wired headset, Bluetooth, and speakerphone) and audio
focus status (active or quiescent)’ [39]. Whenever the driver conducts a phone call via
the external handsfree kit and switches back to the earpiece or phone speaker, the tele-
com audio_route is switched and logged (see Fig. 8).

<<output omitted>>
20:27:12.723 - SET_RINGING (successful incoming call) (...
20:27:12.924 - START_RINGER(...
20:27:12.926 - SKIP_VIBRATION (hasVibrator=true, ...
20:27:13.003 - AUDIO_ROUTE (Leaving state QuiescentBluetoothRoute) :(...
20:27:13.003 - AUDIO_ROUTE (Entering state RingingBluetoothRoute) (...
20:27:16.623 - UNMUTE: BPSIl.aC->CARSM.pM_MUTE_OFF@m8I
20:27:16.649 - STOP_RINGER: BPSl.aC@ma8I
20:27:16.674 - REQUEST_ACCEPT: BPSl.aC@mS8I
20:27:16.958 - AUDIO_ROUTE (Leaving state RingingBluetoothRoute): ...
20:27:16.959 - AUDIO_ROUTE (Entering state ActiveBluetoothRoute): ...
20:27:16.993 - SET_ACTIVE (active set explicitly):CSW.sA@m8Q,
20:27:17.048 - CAPABILITY_CHANGE ...
20:27:32.378 - SET_DISCONNECTED (disconnected set explicitly> DisconnectCause
20:27:32.509 - DESTROYED:CSW.rC@m+E

<<output omitted>>

Fig. 8. Telecom - Switching audio routes

Yet another benefit is that telecom service preserves the phone log entries even if the
user deletes the log from her user interface. The downside it that telecom log is not
reboot resilient.

4.6 Bluetooth

Bluetooth manager has been available in Android source code since API 18. The most
valuable artefacts reside in the base64-encoded BTSnoop file format log summary.
BTSnoop log resembles the snoop format of Host Controller Interface (HCI) packets’
[40]. Depending on the installed platform, B7Snoop log summary may contain an ex-
tended clear text log. If a driver conducts a phone call via a Bluetooth paired device,

7 https://tools.ietf.org/html/rfc176 1

15

either incoming or outgoing, a unique event HFSM-enter AUDIO is generated. The
event itself does not signal an answered call, but rather entering the ringing state. With
incoming calls, if the call is answered, the service will generate ‘HSFM-
processAnswerCall’ event. If the call is outgoing, the BT manager generates the HFSM-
processDialCall record. When the call is finished, the mobile device quits the AUDIO
states which is signalled by HFSM-enter Connected message (see Fig. 9).

<<output omitted>>
05-04 20:27:12.808--HFSM-setAudioParams(prev) - 0,1
05-04 20:27:12.811--btif_hf.cc -- connect_audio([0] e0:ae:5e:f6:7c:XX)
05-04 20:27:13.003--HFSM-msg 6, but mVoiceRecognitionDevice is null
05-04 20:27:13.468--HFSM-setAudioParams - 0,1
05-04 20:27:13.471--HFAM-clear pathChangeTone (false, false)
05-04 20:27:13.507--HFSM-enter AUDIO (1/1) : F6:7
05-04 20:27:16.575--HFSM-processAnswerCall : F6:7
05-04 20:27:32.495--btm_sco.cc -- Send SCO Disc Req to 6
05-04 20:27:32.522--btm_sco.cc -- Recv SCO Disc Comp 22 on 5 from 6
05-04 20:27:32.530--HFSM-enter Connected (1/1)
<<output omitted>>

Fig. 9. Bluetooth manager - received phone call

If the call is conducted over cross-platform VoIP applications such as WhatsApp, the
service records the events accordingly. The log integrity is not affected by system re-
boot, and log lifetime exceeds several months; the tested device held the log from the
last 5 months.

4.7 SSRM Service (CustomFrequencyManagerService)

Android dumpsys CustomFrequencyManagerService (SSRM service) is the last of the
documented services which may clarify the circumstances of the accident.® SSRM ser-
vice has been identified only on Samsung devices. Despite this, if the investigated
model is a Samsung, the investigator should include the output from the SSRM service
in the range of observed artefacts.

The content of the SSRM service can be acquired by adb shell dumpsys CustomFre-
quencyManagerService. The output can be divided into two main sections:

1. Application (process) statistics and Recent Battery Level Changes; and
2. SSRM memory dump.

Both sections hold battery statistics data, mainly about total operational time, the period
of the time over which the device was charged, and the amount of data transferred while
connected to WiFi or GSM networks. Device battery statistics are recorded separately
for applications in the foreground and background when the state of the screen is on

8 As of API level 28, the data previously available under CustomFrequencyManagerService service are available under sdhms

service. CustomFrequencyManagerService remains present but without any forensic value.

16

and off, while the phone is connected to a paired Bluetooth device, and while using
different power modes.

Apart from the per-app statistics, the Recent Battery Level Changes section keeps an
overall battery statistic which is summarised for both states separately when the screen
is on and off. Each time the state of the screen changes, the Start Time and the End
Time of a new state is recorded, and Duration of the state is calculated. Whenever the
device’s battery is charged, the OnBatteryTime value equals 0 ms. The primary draw-
back resides in the reliability of the artefact. In testing, the Recent Battery Level
Changes did not contain screen on/off events each time as they were triggered. How-
ever, should the event be already present in the log, it can be considered as reliable
information.

The content of the SSRM memory dump is dumped as a base64-encoded data stream
delimited by SSRM MEMORY DUMP* header and trailer. Decoded data stream re-
solves in a gzip-compressed data structure. The decompressed event log consists of
fixed header and the SSRM service log body. Each event is tagged by a timestamp,
followed by an event type tag and the log message. The decompressed SSRM service
log body holds a fixed number of 8,002 events. Since the detailed description of the
SSRM service log is beyond the scope of this paper, further explanation will be limited
to a brief description of two of the twelve recognised event types, [SET] and [PKG].
An example of the SSRM service log limited to [SET] and [PKG] events is in Fig. 10.

<<output omitted>>
2019-02-08 23:08:44 [SET] [NDXOXRXXXOXXOX] [LCD] OFF
2019-02-08 23:10:24 [SET] [NDXOXRXXXOOXOX / BT: Volvo] [BT] CONNECTED
2019-02-08 23:10:51 [PKG] com.samsung.android.incallui
2019-02-08 23:10:51 [SET] [NDXOORXXXOOXOX / BT: Volvo] [LCD] ON
2019-02-08 23:11:04 [PKG] com.facebook.katana
2019-02-08 23:11:10 [SET] [NDXOXRXXXOOXOX / BT: Volvo] [LCD] OFF
2019-02-08 23:14:33 [PKG] com.samsung.android.incallui
2019-02-08 23:14:33 [SET] [NDXOORXXXOOXOX / BT: Volvo] [LCD] ON
2019-02-08 23:14:34 [SET] [NDXOOROXXOOXOX / BT: Volvo] > [Call] CallStateOffHook : true
2019-02-08 23:15:05 [SET] [NDXOXROXXOOXOX / BT: Volvo] [LCD] OFF
<<output omitted>>

Fig. 10. An example of SSRM service log

A [PKG] event types refer to application execution or activity. The body of the message
refers to the name of the package which was executed. In comparison to the UsageStats
artefacts, [PKG] events do not allow us to differentiate between activities within the
same application. In addition, [PKG] messages may appear in the log even if the driver
does not interact with the application. For instance, when a driver ignores an incoming
phone call, once the ringing state is over the SSRM service will generate a [PKG] event
which refers to the application on the top of the UI. Should the Facebook app be the
last used application, the service will generate [PKG] com.facebook.katana event which
can be misinterpreted as driver interaction. These and other discrepancies can be clari-
fied.

A [SET] event type primarily reports power management changes. The SSRM ser-
vice distinguishes two power-related functions, the power mode and the battery status.

17

Depending on the version of AOS, the investigator may recognize Normal Mode [N],
Power Saving Mode [P]; Ultra Power Saving Mode [U] and the Emergency Mode [E].°
It also distinguishes battery status — charged or discharged. If the device is charged, the
service tracks the charging methods standard AC charging [Ac], USB charging [Usb],
Wireless charging method [W] or Fast Charging [F]. The information is combined in
the first two bits at the beginning of the [SET] event bit string.'” While the 1st bit rep-
resents the power mode — [SET] [Nxxxxx...] — the 2nd reports battery status — [SET]
[xAxxxxx...]. For instance, a device which is set to Power Saving Mode [P] and
charged by standard charger [Ac] will generate [SET] [PAxxxxx...] events. Similarly,
a device which is set to Normal Mode and discharged [D], generates the [NDxxxxx...]
events (see an example in Fig. 11).

2019-02-03 15:19:20 [SET] [PAXOOWXXXOXXOX / Wifi:"MyWiFi",5240MHz] [LCD] ON
| J L] L)L J_J

timestampJ

event type
[SET|COM|NET] [..]

[
PAX@OWXXXOXXO0X

power management mode connected network
P=Power Save Mode Wifi: "SSID", band[MHz]
N=Normal Mode BT=Bluetooth [-, device name]
E=Emergency Mode
-] specification #1
LCD=screen status
charging standard CHG=charging status
A=standard charging >>>=[call|Wifi|AFC|PSM|UPSM] [..]
F=fast charging
U=USB charging specification #2
[.] [ON|OFF]

[AC/USB; ON|OFF]
[true|false]
[connected|disconnected]

Fig. 11. SSRM [SET] - An example of decoded SET event

Each time the power mode is changed, a single or a combination of SET events is gen-
erated. Similarly, each time the device is connected or disconnected from the power
source; the charging status change is logged.

A similar approach is applied for screen changes. Each time the screen is changed to
on or off, the SET [LCD] ON, respectively SET [LCD] OFF event is generated. Con-
sequently the 4th bit of the SET event bit string is switched to value 0 if the screen is
on, or switched back to value X if the screen is off. The [LCD] ON|OFF events are
reliably generated regardless of the trigger, be it user interaction, a received phone call
or notification of a fully charged battery.

9 A slightly different terminology can be identified in devices running AOS 7.0+.

10 The official terminology or definitions may differ.

18

SSRM memory dump [SET] event content is not limited to power mode and charging
status. It tracks any network-related changes such as connectivity to Bluetooth devices
or WiFinetworks. It tracks details such as SSIDs, Bluetooth friendly names, connection
status, whether Bluetooth is enabled or if the device is also connected to an external
device. A summary of decoded attributes is presented in Fig. 11.

The log lifetime depends on device activity, the primary tested device held the events
from the last 5 days. Neither intentional reboot, nor several hours long power outage
affected the integrity of the log.

5 Synthetic Case Study and Results

The case study demonstrated a simulated car accident which occurred after the driver’s
interaction with a mobile device. The test was conducted on a Samsung Galaxy S9, SM-
G960F/DSA, AOS 8, connected by Bluetooth to the car’s entertainment system. The
evidence acquisition was limited to 8 out of 225 supported services which were de-
scribed in the previous section. The timeline search was focused on a 20-minute time
window when the accident was reported. All simulated activities were conducted in
accordance with testing script and executed by a co-driver. The script contained the
following activities:

1. mobile device connected to the car’s stereo system;

2. driver uses Chrome app to search for a new destination and uses Google maps app
for navigation;

3. driver receives phone call, responds via handsfree kit and switches to device’s ear-
piece;

4. driver is texting via Messenger; and

5. driver is taking pictures.

Since, the full analysis results exceed the scope of this paper, the applicability of this
technique is demonstrated only on a limited number of examples.

19

5.1 Results

The analysis can be approached from multiple angles. The first option can be to focus on the
driver’s login and screen activities to identify whether a driver even attempted to log in. In the
current case, multiple login activities were reported by WifiController (wifi), BinderProxy (sta-
tusbar) and Crypt Connector (mount) classes. Each login activity was followed by Screen On
activity, which copies natural behaviour while logging into the device. Screen activities were
proven reliably reported by all examined wifi classes (see Fig. 12).

Time CLASS DESCRIPTION MESSAGE

13:45:47.285 WifiController screen ON processed=DefaultState org=DeviceActiveState dest=<null> what=155650
13:45:47.286 AutoWifiControll screen ON processed=DefaultState org=InitialState dest=<null> what=12(@xc) CMD_]
13:45:50.236 BinderProxy UI locked pkg=com.android.systemui userId=@ what=HOME RECENT token=android.os.H
13:45:53.420 CryptConnector unlock requested SND -> {168 cryptfs setpw_for_ext [scrubbed]}

13:45:53.421 CryptConnector unlock confirmed RCV <~ {200 168 0}

13:45:53.862 BinderProxy UI unlocked pkg=com.android.systemui userId=@ what=CLEAR token=android.os.BinderH
13:45:53.918 WifiController login detected processed=DeviceActiveState org=DeviceActiveState dest=<null> what=15
13:48:47.623 AutoWifiControll screen OFF processed=DefaultState org=InitialState dest=<null> what=12(@xc) CMD_]

Fig. 12. Driver’s login activity

The second option is to observe UsageStats — Event type collector events which cannot
be generated without user interaction. Within an observed timeframe, it was possible to
detect all driver activity defined in a test script, including:

home button touch, (com.android.launcher);

run Galaxy Finder to search for an application;

run Waze app and set up the navigation;

USB connectivity (car’s charger);

switching between executed applications Chrome app, Google maps, Messenger,
Waze and Contacts;

browsing contacts, dialling, conducting a phone call;

e switch to PiP mode; and

e taking a camera picture.

An example of driver activities extracted from Usage statistics is in the figure below.

20

Time ORDER SOURCE MESSAGE

13:29:00.000 2053 usagestats type=MOVE_TO_FOREGROUND package=com.samsung.android.app.galax
13:29:00.000 2054 usagestats type=MOVE_TO_BACKGROUND package=com.samsung.android.app.galax
13:29:00.000 2055 usagestats type=MOVE_TO_FOREGROUND package=com.sec.android.app.launcher
13:30:00.000 2056 usagestats type=MOVE_TO_BACKGROUND package=com.sec.android.app.launcher
13:30:00.000 2057 usagestats type=MOVE_TO_FOREGROUND package=com.android.chrome class=org.
13:30:00.000 2058 usagestats type=MOVE_TO_BACKGROUND package=com.android.chrome class=org.
13:30:00.000 2059 usagestats type=MOVE_TO_FOREGROUND package=com.google.android.apps.maps

Fig. 13. An example of Usagestats diagnostic output

Even the output from UsageStats could be sufficient to conclude that the driver did
interact with the mobile device. When the driver conducted a phone call, the mobile
device was already connected to the car’s entertainment system. Therefore, the ring
tone was routed through the car’s audio system, which was signalled by both blue-
tooth_manager (at 13:22:37.839) and telecom services (at 13:22:38.012) (follow Fig.
14).

Time CLASS DESCRIPTION MESSAGE

13:22:36.000 phone log call started "CallTC@l5 [Apr 277

13:22:37.839 BT logs BT entered AUDIO —HFSM-enter AUDIO (1/1) : F6:7

13:22:38.011 phone log audio route AUDIO_ROUTE (Leaving state QuiescentBluetoothRoute
13:22:38.012 phone log audio route AUDIO_ROUTE (Entering state RingingBluetoothRoute)
13:22:39.470 AutoWifiControll screen ON processed=DefaultState org=InitialState dest=<nullj
13:22:40.667 BT logs Call answered —HFSM-processAnswerCall : F6:7

13:22:40.928 phone log audio route @ @ AUDIO_ROUTE (Leaving state RingingBluetoothRoute):H
13:22:40.928 phone log audio route AUDIO_ROUTE (Entering state ActiveBluetoothRoute):H
13:22:41.207 BT logs BT AUDIO disconnected --HFSM-enter Connected (1/1)

Fig. 14. A phone call conducted via BT handsfree device

Then the driver accepted an incoming call which was again signalled by both services,
by bluetooth_manager at 13:22:40.667 and by telecom at 13:22:40.928. At
13:22:41.207 bluetooth_manager reported the change of state to HFSM-enter Con-
nected (1/1) which signals a return to the ‘normal’ state without interactive connection
to the Bluetooth-connected device (see Fig. 15). The device stayed connected to the
car’s entertainment system, but the call was not streamed via the audio system. Also,
telecom service reported another change of state from BluetoothRoute to EarpieceRoute
at 13:22:41:211 From this moment, the rest of the call was conducted via the phone’s
earpiece. Once the phone call was finished, the display switched on (13:23:15.649) and
the UI was locked.

21

Time CLASS DESCRIPTION MESSAGE

13:22:41.207 BT logs BT AUDIO disconnected ——HFSM-enter Connected (1/1)

13:22:41.211 phone log audio route AUDIO_ROUTE (Leaving state ActiveBluetoothRoute):BRM.oR->BR)
13:22:41.211 phone log audio route AUDIO_ROUTE (Entering state ActiveEarpieceRoute):BRM.oR->BRI|
13:23:11.811 AutoWifiControll screen OFF processed=DefaultState org=InitialState dest=<null> what=12
13:23:15.576 phone log call ended DESTROYED: CSW. rC@DjA

13:23:15.649 AutoWifiControll screen ON processed=DefaultState org=InitialState dest=<null> what=12
13:23:19.270 BinderProxy UI locked pkg=com.android.systemui userId=@ what=HOME RECENT tok
13:23:23.149 AutoWifiControll screen OFF processed=DefaultState org=InitialState dest=<null> what=12

Fig. 15. A phone call conducted via BT handsfree device

Similar results can also be retrieved from the SSRM service. The analyst can determine
Bluetooth connectivity to car’s audio system and the call, which is accompanied by
screen activities. Analysts may also detect that the phone was set to Power saving mode,
charged through the USB and connected to Volvo Car’s entertainment system (see Fig.
16).

Time CLASS DESCRIPTION MESSAGE

13:22:38.000 SSRM app launched [PKG] com.samsung.android.incallui

13:22:39.000 SSRM screen ON [SET] [PUX@ORXXX00XOX / BT:My Volvo Car] [LCD] ON
13:22:41.000 SSRM - [SET] [PUX@OROXX00XOX / BT:My Volvo Car] >>> [Call]
13:23:11.000 SSRM screen OFF [SET] [PUX@XROXX00XO0X / BT:My Volvo Car] [LCD] OFF
13:23:15.000 SSRM = [SET] [PUX@XRXXX00X0X / BT:My Volvo Car] >>> [Call]
13:23:15.000 SSRM screen ON [SET] [PUX@ORXXX00X0X / BT:My Volvo Car] [LCD] ON
13:23:19.000 SSRM app launched [PKG] com.waze

13:23:23.000 SSRM screen OFF [SET] [PUX@XRXXX00XOX / BT:My Volvo Car] [LCD] OFF

Fig. 16. A phone call conducted via BT handsfree device

In addition to the driver’s behavioural activities, the investigator can determine other
circumstances which might be relevant. For instance, analysts may detect the time when
the mobile phone was connected or disconnected from the wireless network (wifi,
SSRM), the time when the driver entered the car and started engine (SSRM, Blue-
tooth_manager) or even the approximate driving path (wifi). They may also detect
whether the mobile device was charged (UsageStats, SSRM) or whether the system was
rebooted (Bluetooth_manager, SSRM). Recent Tasks may also hold information about
user activity (Intent). If the observed task is still in the stack, the investigator may obtain
its content. Since in the current case the applications had not been closed but rather
pushed to the background of UI, the content of the tasks could be restored (see Fig. 17).

22

Time MESSAGE

13:48:47.038 * Recent #5: TaskRecord{daac8a3d@ #432 A=com.samsung.android.incallui U=0 StackId=-1 sz=0}
mFullscreen=true mLastNonFullscreenBounds=null mLastDeXBounds=null intent={act=android.in
tent.action.MAIN flg=0x10840000 cmp=com.samsung.android.incallui/com.android.incallui.InCall
Activity} hasBeenVisible=true mResizeMode=RESIZE_MODE_RESIZEABLE_VIA_SDK_VERSION mSuppor
tsPictureInPicture=false isResizeable=true firstActiveTime=1556362127038 lastActiveTime=1556
362127038 lastActiveElapsedTime=393605219 (inactive for 1091s)

14:04:11.385 * Recent #4: TaskRecord{ele2ff@d® #424 A=com.google.android.apps.maps U=0 StackId=1 sz=1}
mFullscreen=true mLastNonFullscreenBounds=null mLastDeXBounds=null intent={act=android.in
tent.action.VIEW cat=[android.intent.category.BROWSABLE] dat=https://maps.google.com/maps?q=
stroomi+beach+address&client=ms-android-samsung-gs-rev1&um=1&ie=UTF-8&sa=X&ved=2ahUKEwj5n5vR
iPDhAhVvsosKHa_XAsIQ_AUoAXoECAsSQAQ flg=0x14000000 cmp=com.google.android.apps.maps/com.googl

Fig. 17. Restored Recent Task Intent

6 Conclusion

The goal of the study was to analyse the scope of the prospective digital evidence which
resides in diagnostic data acquired from the adb dumpsys tool. As was demonstrated,
dumpsys analysis does not require anything other than standard user-level access with
the developer’s options enabled, and it allows the investigator access to system-level
data. The results from the analysis and synthetic case study proved the applicability of
this technique in a real-life car accident investigation. The analysts have several options
to determine user interaction with a mobile device, including their logins, texting, call-
ing, interaction with social media or browsing offline content. Analysts can also iden-
tify telephony activities and distinguish their operating modes, such as conducting the
phone call via the phone’s earpiece or external handsfree appliance. Dumpsys diagnos-
tic data allows the recovery of deleted phone call entries or attempts to delete other
artefacts, which could lead to conviction. Since evidence acquisition does not rely on
specialised digital forensics equipment, it may be conducted outside digital forensics
laboratories.

Like any other operating system, the range and structure of the events described may
be invalidated by newly implemented upgrades. The logic of the described services is
such that the structure of the events can be re-designed, re-placed or may be completely
removed. Despite these facts, the core services, such as, activity, Bluetooth_manager,
usagestats and wifi have been identified across a selection of different mobile device
brands, types and operating system versions, from AOS 5 to AOS 10. Even if a portion
of the events may still become unavailable, the results and the method described in this
work can serve as a valid starting point to conduct further research and customized
development on a wider selection of brands and operating systems.

The outcome of the study can assist digital forensic practitioners to reveal additional
evidence while investigating any type of crime or supporting the intelligence opera-
tions. Discovered artefacts may clarify the scope of used applications, services, paired
accounts, paired devices, connected networks, visited locations, etc. It enables differ-
entiation between whether a certain activity was initiated by a system or a user. The
demonstrated method can assist investigators to verify a suspect’s alibi, build commu-
nication networks or even verify whether a device’s security has been breached. It can

23

also provide a vital framework for targeted preparation, automated evidence collection
and further evidence visualisation.

7 Future Work

One of the biggest challenges identified in the study is to determine login activities. A
significantly more believable artefact of the user’s login activity can be extracted from
the Android buffer log through logcat. However, the main drawback of a buffer log is
its volatility, and future research should be focused either on less volatile evidence or
methods to extend the artefact’s lifetime.

As the scope of the analysed artefacts retrieved from Android dumpsys has not as
yet been exhausted, further analyses should be extended to a number of additional top-
ics. Activity manager has been found to be one of the most verbose plugins, responsible
for almost 25% of dumpsys output. However, this analysis covered only 1 of 14 sections
holding the information about user- and system-initiated activities. Correlation between
Recent Tasks, Broadcast Activities and Pending Items activities might extend under-
standing of past user behaviour. The same applies to other services, mainly wifi and
bluetooth_manager, which have not been explored in depth. Knowing how msg.what
messages are constructed, additional research may deliver further evidence providers,
which reflect human activities.

Since the structure of particular events from core services, such as activity, blue-
tooth_manager, usagestats and wifi has been changed with new AOS, demonstrated
artefacts will require systematic verification. A significant challenge will be to keep
track of newly implemented services. While the tested device (Samsung S9, AOS 8)
offered 225 services, the same device upgraded to AOS 10 provides access to 303 ser-
vices. Finally, automating post-acquisition analysis to build a structured timeline, be it
JSON, CSV or other formats, would allow both effective examination and the correla-
tion of results with external evidence providers across multiple cases.

8 Acknowledgments

I would like to thank Matthew Sorells for fruitful discussions and highly valuable feed-
back.

24

References

10.

1.

12.

13.

14.

15.

16.

. Lynne, C., Graeme, G.: Investigating evidence of mobile phone usage by drivers in road

traffic accidents. Digital Investigation 12, S30-S37 (2015).

Tamma, R., Skulkin, O., Mahalik, H., Bommisetty, S.: Practical Mobile Forensics,:A hands-
on guide to mastering mobile forensics for the iOS, Android, and the Windows Phone plat-
form. 3rd edn. Pack Publishing Ltd., Birmingham (2018).

Mantouka, E.G., Barmpounakis E.N., Vlahogianni E.I.: Identifying driving safety profiles
from smartphone data using unsupervised learning. Safety Science 119, 84-90 (2019).
Papadimitriou, E., Argyropoulou, A., Tselentis D.I., Yannis G.: Analysis of driver behaviour
through smartphone data: The case of mobile phone use while driving. Safety Science 119,
91-97 (2019).

Mansor, H., Markantonakis, K., Akram, R.N., Mayes, K., Gurulian, I.: Log your car: The
non-invasive vehicle forensics. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 974-982.
IEEE, Tianjin (2016).

Khandakar, A., Chowdhury, M.E., Ahmed, R., Dhib, A., Mohammed, M., Al-Emadi,
N.A.M.A., Michelson, D.: Portable System for Monitoring and Controlling Driver Behavior
and the Use of a Mobile Phone While Driving. Sensors 19(7), 1563 (2019).

Khan, I., Khusro, S., Alam, I.: Smartphone Distractions and its Effect on Driving Perfor-
mance using Vehicular Lifelog Dataset. In: 2019 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), pp. 1-6. IEEE, Swat (2019).

Park, H., Ahn, D., Park, T., Shin, K.G.: Automatic Identification of Driver’s Smartphone
Exploiting Common Vehicle-Riding Actions. IEEE Transactions on Mobile Computing
17(2), 265-278 (2018).

Torres, R., Ohashi O., Pessin, G.: A Machine-Learning Approach to Distinguish Passengers
and Drivers Reading While Driving. Sensors 19(14), 3174 (2019).

Yang, J., Sidhom, S., Chandrasekaran, G., Vu, T., Liu, H., Cecan, N., Chen, Y., Gruteser,
M., Martin, R.P.: Detecting Driver Phone Use Leveraging Car Speakers. IEEE Transactions
on Mobile Computing 11(9), 1426-1440 (2012).

Cano, T.A., Junker, D.H., Martensson, M., Skov, M.B., Raptis, D.: Using Smartwatch Iner-
tial Sensors to Recognize and Distinguish Between Car Drivers and Passengers. In: 10th
International Conference on Automotive User Interfaces and Interactive Vehicular Applica-
tions (AutomotiveUI ’18), pp. 74-84. (2018).

Liu, L., Karatas, C., Li, H., Tan, S., Gruteser, M., Yang, J., Chen, Y., Martin, R.P.: Toward
Detection of Unsafe Driving with Wearables. In: Proceedings of the 2015 Workshop on
Wearable Systems and Applications (WearSys ’15), pp. 27-32. (2015).

Mannini, A., Sabatini A.M.: Machine Learning Methods for Classifying Human Physical
Activity from On-Body Accelerometers. Sensors 10(2), 1154-1175 (2010).

Lu, D.-N., Nguyen, D.-N., Nguyen, T.-H., Nguyen, H.-N.: Vehicle Mode and Driving Ac-
tivity Detection Based on Analyzing Sensor Data of Smartphones. Sensors 18(4), 1036
(2018).

Oviedo-Trespalacios, O., King, M., Vaezipour, A., Truelove, V.: Can our phones keep us
safe? A content analysis of smartphone applications to prevent mobile phone distracted driv-
ing. Transportation Research Part F: Traffic Psychology and Behaviour 60, 657-668 (2019).
Ferrante, A., Medvet, E., Mercaldo, F., Milosevic, J., Visaggio, C.A.: Spotting the Malicious
Moment: Characterizing Malware Behavior Using Dynamic Features. In: 11th International
Conference on Availability, Reliability and Security (ARES), pp. 372-381. IEEE, Salzburg
(2016).

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

25

Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward Developing a Systematic
Approach to Generate Benchmark Android Malware Datasets and Classification. In: 2018
International Carnahan Conference on Security Technology (ICCST), pp. 1-7. IEEE, Mon-
treal (2018).

Trivedi N., Das M.L.: MalDetec: A Non-root Approach for Dynamic Malware Detection in
Android. In: Shyamasundar R., Singh V., Vaidya J. (eds) Information Systems Security,
ICISS 2017. LNCS, vol. 10717, pp. 231-240. Springer, Cham (2017).

Tabheri, L., Kadir, A.F.A., Lashkari, A.H.: Extensible android malware detection and family
classification using network-flows and API-calls. In: 2019 International Carnahan Confer-
ence on Security Technology (ICCST), pp. 1-8. IEEE, Chennai (2019).

Shoaib, M., Incel, O.D., Scolten, H., Havinga, P.: Resource consumption analysis of online
activity recognition on mobile phones and smartwatches. In: 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC), pp. 1-6. IEEE, San Di-
ego (2017).

Goémez, M., Rouvoy, R., Adams, B., Seinturier, L.: Mining Test Repositories for Automatic
Detection of UI Performance Regressions in Android Apps. In: 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR), pp. 13-24. IEEE, Austin
(2016).

Basara, O.E., Alptekina, G., Volakaa, H.C., Isbilenb, M., Incela, O.D.: Resource Usage
Analysis of a Mobile Banking Application using Sensor-and-Touchscreen-Based Continu-
ous Authentication. Procedia Computer Science 155, 185-192 (2019).

Dumpsys, https://developer.android.com/studio/command-line/dumpsys, last accessed
2019/01/25.

Logcat command-line tool, https://developer.android.com/studio/command-line/logcat#al-
ternativeBuffers, last accessed 2018/12/30.

Google Git Google repositories on Android, https://android.googlesource.com/, last ac-
cessed 2019/01/24.

RecentTasksInfo, https://developer.android.com/reference/kotlin/android/app/Activity-
Manager.RecentTaskInfo.html, last accessed 2020/04/15.

Understand Tasks and Back Stack, https://developer.android.com/guide/components/activi-
ties/tasks-and-back-stack, last accessed 2020/04/15.

Intent, https://developer.android.com/reference/android/content/Intent.html, last accessed
2020/04/10.

Intents and Intent Filter, https://developer.android.com/guide/components/intents-filters,
last accessed 2020/04/10.

UsageStats, https://developer.android.com/reference/android/app/usage/UsageStats, last ac-
cessed 2020/03/17.

UsageEvents.Event, https://developer.android.com/reference/android/app/usage/Us-
ageEvents.Event.html, last accessed 2020/03/17.

WiFiManager, https://developer.android.com/reference/android/net/wifi/WifiManager, last
accessed 2020/03/02.

Google Git, Protocol java, https://android.googlesource.com/platform/frame-
works/base.git/+/master/core/java/com/android/internal/util/Protocol.java, last accessed
2020/03/01.

Google Git, WifiController.java, https://android.googlesource.com/platform/frame-
works/base/+/02ba86f/services/java/com/android/server/wifi/WifiController.java, last ac-
cessed 2020/03/07.

Binder, https://developer.android.com/reference/android/os/Binder.html, last accessed
2020/01/25.

26

36.

37.
38.

39.

40.

41.

42.

IBinder, https://developer.android.com/reference/android/os/IBinder.html, last accessed
2020/01/25.

Android_Binder, https://elinux.org/Android_Binder, last accessed 2019/05/04.

Google Git, BinderProxy.java, https://android.googlesource.com/platform/frame-
works/base/+/master/core/java/android/os/BinderProxy.java, last accessed 2019/07/25.
Google Git, CallAudioRouteStateMachine.java, https://android.googlesource.com/plat-
form/packages/services/Telecomm/+/android-7.0.0_r7/src/com/android/server/tele-
com/CallAudioRouteStateMachine.java, last accessed 2019/04/29.

Android source, Bluetooth and NFC, https://source.android.com/devices/bluetooth/verify-
ing_debugging, last accessed 2019/05/02.

Configure on-device developer options, https://developer.android.com/studio/debug/dev-
options, last accessed 2019/01/23.

Code Review, WifiController.java, https://review.arrowos.net/c/ArrowOS/android_frame-
works_opt_net wifi/+/3458/1/service/java/com/android/server/wifi/WifiController.java,
last accessed 2019/05/22.

